
ON-LINE ALGORITHMS AND REVERSE MATHEMATICS

A Thesis

Submitted to the Faculty

in partial fulfillment of the requirements for the

degree of

Doctor of Philosophy

in

Mathematics

by

Seth Harris

DARTMOUTH COLLEGE

Hanover, New Hampshire

May 11, 2017

Examining Committee:

Marcia Groszek, Chair

Peter Winkler

Samuel Levey

Reed Solomon

F. Jon Kull, Ph.D.
Dean of Graduate and
Advanced Studies



Copyright by
Seth Harris

2017



Abstract

In this thesis, we classify the reverse-mathematical strength of sequential problems.

If we are given a problem P of the form

∀X(α(X) → ∃Zβ(X,Z))

then the corresponding sequential problem, SeqP, asserts the existence of infinitely

many solutions to P:

∀X (∀nα(Xn) → ∃Z∀nβ(Xn, Zn))

P is typically provable in RCA0 if all objects involved are finite. SeqP, however, is

only guaranteed to be provable in ACA0. In this thesis we exactly characterize which

sequential problems are equivalent to RCA0, WKL0, or ACA0.

We say that a problem P is solvable by an on-line algorithm if P can be solved

according to a two-player game, played by Alice and Bob, in which Bob has a win-

ning strategy. Bob wins the game if Alice’s sequence of plays 〈a0, . . . , ak〉 and Bob’s

sequence of responses 〈b0, . . . , bk〉 constitute a solution to P. Formally, an on-line

algorithm A is a function that inputs an admissible sequence of plays 〈a0, b0, . . . , aj〉

and outputs a new play bj for Bob. (This differs from the typical definition of “algo-

rithm,” though quite often a concrete set of instructions can be easily deduced from
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A.)

We show that SeqP is provable in RCA0 precisely when P is solvable by an on-line

algorithm. Schmerl [33] proved this result specifically for the graph coloring problem;

we generalize Schmerl’s result to any problem that is on-line solvable. To prove our

separation, we introduce a principle called Predictk(r) that is equivalent to ¬WKL0

for standard k, r.

We show that WKL0 is sufficient to prove SeqP precisely when P has a solvable

closed kernel. This means that a solution exists, and each initial segment of this

solution is a solution to the corresponding initial segment of the problem. (Certain

bounding conditions are necessary as well.) If no such solution exists, then SeqP is

equivalent to ACA0 over RCA0 + IΣ0
2; RCA0 alone suffices if only sequences of stan-

dard length are considered. We use different techniques from Schmerl [34] to prove

this separation, and in the process we improve some of Schmerl’s results on Grundy

colorings.

In Chapter 4 we analyze a variety of applications, classifying their sequential forms

by reverse-mathematical strength. This builds upon similar work by Dorais [6] and

Hirst and Mummert [22]. We consider combinatorial applications such as matching

problems and Dilworth’s theorems, and we also consider classic algorithms such as

the task scheduling and paging problems. Tables summarizing our findings can be

found at the end of Chapter 4.
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Chapter 1

Background

1.1 Reverse Mathematics

Reverse Mathematics is a program in mathematical logic that intends to determine

which axioms are necessary to prove a given theorem. Most mathematical activity

starts by assuming a set of axioms in order to deduce a theorem; we tend to go in

“reverse,” starting with a theorem and proving the necessary axioms.

Stephen Simpson, among the first significant contributors to the field, poses as the

“Main Question” of Reverse Mathematics ([35], p. 2): “Which set existence axioms

are needed to prove the theorems of ordinary, non-set-theoretic mathematics?” Clearly

much of mathematics can be proven without the full strength of, say, the Axiom of

Choice, where we quantify over every possible set. No, most of the best-known

theorems require only real numbers, sets of real numbers, sets of sets of real numbers,

and maybe an order or two higher at best.

So we examine set existence axioms that are much weaker than the full ZFC,

but our program provides a rich refinement of “ordinary” mathematics according to

strength and implication. Friedman [11] developed a hierarchy of axiom systems in his
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paper “Some systems of second-order arithmetic and their use,” and this hierarchy has

been the core of the Reverse Mathematics program ever since. Nearly all of the reverse

mathematics background can be found in Simpson’s comprehensive monograph [35].

Hirschfeldt’s recent textbook [19] is another valuable resource, particularly for the

reverse mathematics of combinatorial principles.

Friedman’s axiom systems are based in computability theory; the computability

background can be found in the standard textbooks [30] and [38]. We use Φe to denote

the eth partial computable function Φe : N→ N in a fixed enumeration; ΦA
e is the eth

partial computable function relative to the oracle A. We write Φe(n) ↓ [s] to mean

that the function halts at stage s; this formally means that s encodes a computation

via Φe that inputs n and outputs a certain natural number m = Φe(n).

The halting set ∅′ is defined as ∅′ = {e : Φe(e) ↓}. Given a set A, the halting

set relative to the oracle A, also called the Turing jump of A, is defined as A′ = {e :

ΦA
e (e) ↓}.

We will sometimes use the notation f ⊆: A → B to denote that dom f ⊆ A and

ran f ⊆ B. If r ∈ N, then the notation f : X → r means that r = {0, 1, . . . , r − 1}.

De denotes “the eth finite set”; formally, if A = {a0, a1, . . . , ak}, then A = De where

e = 2a0 + 2a1 + · · ·+ 2ak .

In most mathematical writing, the symbols N and ω are used interchangeably

for the natural numbers. Since we will frequently work in nonstandard models, the

numbers in our model may not behave like the standard natural numbers. Throughout

this thesis, the symbol N will refer to the set of numbers in our model, and ω will

refer to the set of standard natural numbers in our model.
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Second-order arithmetic and the Big Five axiom subsystems

Reverse mathematics takes place in second-order arithmetic. The language of second-

order arithmetic is two-sorted, including number variables (x, y, z, . . .) and set vari-

ables (X, Y, Z, . . .). Number variables are intended to range over N and set variables

are intended to range over subsets of N. The language also includes +, ·, 0, 1, =, <

, ∈, and the standard logical connectives, number quantifiers, and set quantifiers. It

is easy to encode real numbers and functions f : N → N as sets of integers. We can

further encode many familiar mathematical objects (Borel sets, continuous functions

g : R→ R, separable metric spaces, graphs and other combinatorial objects) and can

state many of their theorems in the language of second-order arithmetic.

The axioms of second-order arithmetic include Robinson arithmetic (which is

Peano arithmetic minus full induction), comprehension axioms for each formula ϕ

of the language, and induction axioms for each formula ϕ of the language, where

ϕ may include free number and set variables as parameters. However, even this is

usually more axioms than necessary, and so we often restrict ourselves to smaller

subsystems.

Definition 1.1.1. The subsystem RCA0 consists of Robinson arithmetic, comprehen-

sion axioms for all ∆0
1-formulas, and induction axioms for all Σ0

1-formulas.

RCA0 (Recursive Comprehension Axiom) is a very mild set of assumptions, and

thus RCA0 is typically our base theory, the theory we assume when proving relation-

ships among stronger statements.

Definition 1.1.2. A tree is a downward-closed subset T ⊆ N<N. A binary tree,

sometimes known as a 0–1 tree, is a downward-closed subset T ⊆ 2<N.

Definition 1.1.3. The subsystem WKL0 consists of RCA0 plus Weak König’s Lemma:

Every infinite binary tree has an infinite path.
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Definition 1.1.4. The subsystem ACA0 consists of RCA0 plus comprehension axioms

for all arithmetical formulas, and induction axioms for all arithmetical formulas.

RCA0, WKL0, and ACA0 are three of the “Big Five” subsystems. The two strongest,

ATR and Π0
1–CA0, will not be used in this thesis, so I will not define them explicitly.

We have the following strict implications:

Π0
1–CA0 =⇒ ATR0 =⇒ ACA0 =⇒ WKL0 =⇒ RCA0

.

A substantial number of familiar theorems in analysis, algebra, and combinatorics

are equivalent to one of the big five subsystems (over the base theory RCA0). For

just one example, the theorem “every countable vector space over Q has a basis” is

equivalent to ACA0 over RCA0. The theorem can be deduced by ACA0, but if you

assume the theorem (and the base theory RCA0), you can also prove ACA0, showing

that ACA0 is necessary as well as sufficient. We could not have proved the theorem

had we only assumed WKL0.

There are some theorems whose equivalence to either WKL0 or ACA0 is very useful

when trying to pinpoint another theorem’s strength. Proofs of all parts of the two

theorems below can be found in [35].

Theorem 1.1.5. The following are equivalent over RCA0:

(i) WKL0

(ii) Bounded König’s Lemma: Let T ⊆ N<N be an infinite tree. If there is a function

g : N→ N such that for all σ ∈ T we have σ(m) < g(m), then T has an infinite

path.
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(iii) Σ0
1-separation: Let f, g : N→ N be injective functions with disjoint ranges, ı.e.,

∀m∀n (f(m) 6= g(n)). Then there exists a set X that separates the ranges of f

and g:

∃X ∀m (f(m) ∈ X ∧ g(m) /∈ X)

Theorem 1.1.6. The following are equivalent over RCA0:

(i) ACA0

(ii) Σ0
1-comprehension

(iii) The existence of the Turing jump A′ of any set A

(iv) The existence of a range of an arbitrary function: Let f : N→ N be an injective

function. Then there exists a set X ⊆ N such that

∀n(n ∈ X ↔ ∃m (f(m) = n))

Other important subsystems

Plenty of theorems do not neatly fall into the five-level hierarchy above. One theorem

whose precise strength long eluded us was RT2
2, the infinite Ramsey’s Theorem for

Pairs. We finally know, thanks to Jockusch [25] and a 2012 paper by Liu [29], that

WKL0 and RT2
2 are incomparable, meaning that models exist of both WKL0 + ¬RT2

2

and of RT2
2 + ¬WKL0.

Other subsystems that will be important to our work are the induction and bound-

ing schemes.

Definition 1.1.7. Let Γ be a class of formulas. The induction scheme for Γ, denoted
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Π0
1–CA0

ATR0

ACA0

IΣ0
n

BΣ0
n

WKL0 RT2
2 · · ·

IΣ0
3

WWKL0 BΣ0
3

IΣ0
2

DNR BΣ0
2

RCA0

Figure 1.1: Implications of common subsystems. All arrows represent strict implica-
tions.
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by IΓ, is defined as the collection of all formulas

(ϕ(0) ∧ ∀n [ϕ(n)→ ϕ(n+ 1)]) → ∀nϕ(n)

for every formula ϕ ∈ Γ.

Definition 1.1.8. Let Γ be a class of formulas. The bounding scheme for Γ, denoted

by BΓ, is defined as the collection of all formulas

(∀x < y) (∃z)ϕ(x, z) → (∃b) (∀x < y) (∃z < b)ϕ(x, z)

for every formula ϕ ∈ Γ.

We will mostly be interested in the subsystems IΣ0
n and BΣ0

n for n ≥ 2. The first

three statements in the theorem below are proven in [17]; the fourth is due to Slaman

[36].

Theorem 1.1.9 (RCA0). Let n ≥ 1.

• IΣ0
n+1 is strictly stronger than BΣ0

n+1, which is strictly stronger than IΣ0
n.

• IΣ0
n ⇔ IΠ0

n.

• BΣ0
n+1 ⇔ BΠ0

n.

• If n ≥ 2, then BΣ0
n ⇔ I∆0

n.

IΣ0
1 is included in RCA0, while every IΣ0

n is included in ACA0.

An equivalent formulation of IΣ0
n that will be useful throughout this thesis is the

least number principle for Π0
n-formulas.
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Proposition 1.1.10. IΣ0
n is equivalent to the least number principle for Π0

n-formulas:

For each Π0
n-formula ψ, if ψ(n) holds for some n, then there is a least n for which

ψ(n) holds.

A final principle that will play a major role in this thesis is DNR, the existence of

a diagonally recursive function.

Definition 1.1.11. A diagonally non-recursive function is a function g : N→ N such

that ∀e(g(e) 6= Φe(e)).

So diagonally non-recursive functions avoid every partial recursive function at at

least one point.

Definition 1.1.12. The principle DNR states that for each oracle A, there exists a

function g : N→ N which is diagonally non-recursive relative to A; ı.e.,

∀e
(
g(e) 6= ΦA

e (e)
)

.

DNR is strictly stronger than RCA0, since the minimal model of RCA0, which

consists of all ∆0
1-sets, does not satisfy DNR. However, DNR is one of the weakest

principles commonly studied in reverse mathematics:

Theorem 1.1.13 (Ambos-Spies [4]). DNR is strictly weaker than WKL0. In fact, it

is strictly weaker than Weak Weak König’s Lemma (WWKL0).

We note that the statement “ΦA
e (n) = x” is expressible in second-order arithmetic

(see [19] p. 50) as follows: There exists s and i, j, x < s such that Di ⊆ A, Dj ⊆ N \A,

and such that Φe〈n, i, j, x〉↓ [s] (so that s codes a computation with information from

e, n,Di, Dj and gives output x). Similarly, we can define in second-order arithmetic
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that B ≤T A (B is Turing reducible to A) if there is e such that n ∈ B if ΦA
e (n) = 1

and n /∈ B if ΦA
e (n) = 0. This allows us to express the Turing jump of A in second-

order arithmetic as well: e ∈ A′ iff ΦA
e (e)↓.

1.2 On-Line Algorithms

On-line algorithms are necessary when we are forced to ask the question, “what is

the best decision I can make with zero knowledge of the future?” In any setting

where we receive a sequence of requests, and must make an immediate decision, with

no knowledge of the future requests, often even not knowing the number of future

requests, we must turn to our optimal on-line algorithm.

(Note: the terminology “on-line” does not refer to the Internet. In fact, the term

predates the wide availability of the Internet. There is no consensus on hyphenation;

both “on-line” and “online” are used in the literature. Our major references in the

reverse mathematics world do use the hyphen, so we will use it as well.)

It is most useful to view an on-line algorithm in terms of a two-player game.

Throughout this thesis, the two players will be named Alice and Bob. Alice and Bob

alternate plays:

Alice a0 a1 a2 · · ·

Bob b0 b1 b2 · · ·

Bob is aspiring to construct an object satisfying a given relation with Alice’s

request sequence ā, and is frequently trying to minimize a certain cost parameter

C(ā, b̄) with his sequence b̄ of plays. Alice, the adversary, is trying to choose requests

that will defeat Bob — either preventing him from constructing his object at all, or

attempting to maximize the cost C(ā, b̄).
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Games, strategies, and algorithms

If A,B are trees (see Definition 1.1.2), a two-player game G is a tree of sequences

〈a0, b0, a1, b1, a2, b2, . . . , 〉 with 〈a0, a1, . . . , ai〉 ∈ A and 〈b0, b1, . . . , bi〉 ∈ B for all i.

The maximal paths in G (finite sequences or infinite branches) are sometimes called

outcomes of the game. In this thesis we will call the two players Alice and Bob, and

we will say that each aj is a play for Alice and that each bj is a play for Bob.

If A and B are trees then A ⊗ B denotes the set of all pairs (ā, b̄) such that

lh(ā) = lh(b̄). Throughout this thesis, we will be considering relations R ⊆ A⊗B.

The game G(A,B,R) will be defined as follows: G(A,B,R) consists of all z̄ =

〈a0, b0, a1, b1, . . . , ak, bk〉 such that ā R b̄ holds for every proper initial segment of z̄. If

w̄ = 〈a0, b0, a1, b1, . . . , ak, bk〉 is a finite outcome of G(A,B,R), then the final relation

ā R b̄ fails. In this case, we say that outcome w̄ constitutes a win for Alice. If

w̄ = 〈a0, b0, a1, b1, . . . , 〉 is an infinite outcome of G(A,B,R), so that ∀k 〈a0, . . . , ak〉 R

〈b0, . . . , bk〉, then we say that outcome w̄ constitutes a win for player Bob.

We sometimes also say that Alice loses if ā /∈ A; while our formal definitions do

not allow this, this should not cause any confusion later.

Formally, an on-line algorithm is the same thing as a strategy for Bob in G(A,B,R):

a function τ that will input any 〈a0, a1, . . . , aj〉 ∈ A and will output bj = τ〈a0, a1, . . . , aj〉

such that 〈
τ〈a0〉, τ〈a0, a1〉, . . . , τ〈a0, a1, . . . , aj〉

〉
∈ B.

(This differs from the most common definition of “algorithm” as a finite set of instruc-

tions, though in quite a few applications, we can easily obtain an on-line algorithm

from an appropriate set of instructions for Bob.)

A winning strategy for Bob is a strategy τ such that for any j and for any a0, . . . , aj,
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we have

〈a0, . . . , aj〉 R
〈
τ〈a0〉, τ〈a0, a1〉, . . . , τ〈a0, a1, . . . , aj〉

〉
.

A strategy for Alice is defined analogously; it is a function that inputs a sequence

〈b0, . . . , bj−1〉 (or the empty sequence) and outputs a play aj = σ〈b0, . . . , bj−1〉 such

that 〈
σ〈〉, σ〈b0〉, . . . , σ〈b0, . . . , bj−1〉

〉
∈ A

A winning strategy for Alice is a strategy σ such that, for any infinite sequence

〈b0, b1, b2, . . . , 〉 there exists a j ∈ N such that for every bj with 〈b0, . . . , bj〉 ∈ B,

〈
σ〈〉, σ〈b0〉, . . . , σ〈b0, . . . , bj−1〉

〉
R 〈b0, . . . , bj−1, bj〉 fails.

If we assume all of second-order arithmetic, these games are determined, meaning

that if Bob does not have a winning strategy, then Alice does. Indeed, if Bob does

not have a winning strategy, then Alice can play a0 such that Bob does not have a

winning strategy above a0, and in general there exists ai that Alice can play such

that Bob does not have a winning strategy above ai. Thus this sequence ā of plays

will be a winning play for Alice.

Typically Bob does not get a “second chance” — if Alice defeats Bob in even one

round, we declare the game over.

The opposite of an on-line algorithm is an off-line algorithm, in which Alice’s

future requests are known in advance. Formally this means that the algorithm will

output bj as a function of all values of {ak : k ∈ N}, not just as a function of

a0 through aj. Usually we may refer to an optimal off-line algorithm OPT, which

guarantees the minimum possible cost. OPT may or may not be unique in this way.

It goes without saying that the optimal on-line and off-line algorithms typically have

11



unequal cost.

Definition 1.2.1. Let A be an on-line algorithm. The competitive ratio of A, CR(A),

is the highest possible ratio between the costs C(ā, A(ā)) and C(ā,OPT(ā)) over all

possible request sequences ā:

CR(A) = sup
ā

C(ā, A(ā))

C(ā,OPT(ā))
.

Definition 1.2.2. Let A be an on-line algorithm. We say that A is d-competitive if

there exists K ∈ N such that

∀ā [C(ā, A(ā)) ≤ d · C(ā,OPT(ā)) +K ] .

On-line algorithms have a wide range of applications, several of which (scheduling,

paging) will be presented in Chapter 4, but which also include computing resource

management (e.g. the k-server problem, moving tasks between servers as new tasks

are called), and computational finance (e.g., buying and selling stocks immediately

as their valuation changes). In more sophisticated models, randomness can be intro-

duced, and certainly there are settings where minimizing the expected cost is the way

to go, rather than minimizing the (sometimes quite unlikely) worst case scenario. For

further reading, see the survey articles [2], [3], and [27].

Example: On-line graph colorings

Definition 1.2.3. A graph is a pair (V,E) where V ⊆ N is a set of vertices and

E ⊆ V × V is an irreflexive, symmetric relation.

Let G = (V,E) be a graph. A proper r-coloring of G is a function ϕ : V → r such

that ϕ(x) 6= ϕ(y) whenever (x, y) ∈ E.
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A universal class of graphs C is a class that is closed under isomorphisms, such

that for every graph G, G ∈ C if and only if every finite induced subgraph of G is

in C. This includes all classes of the form Forb(F); the class of graphs that have no

induced subgraphs in a particular class of finite graphs F . (So that the graphs in F

are “forbidden.”) For example, the universal class of graphs with no 3-cycles is equal

to Forb(K3), where Kn is the complete graph on n vertices. Forb(K3) is sometimes

called the class of triangle-free graphs.

Let C be a universal class of graphs, and let r ≥ 2. The game associated with

on-line r-coloring of graphs in C, which we call G(C, r), is played out as follows:

• Alice plays a new graph vertex and specifies whether or not it is connected

by an edge with each vertex that she played on an earlier round. Alice loses

immediately if the graph played thus far does not belong to the class C.

• Bob responds by assigning a color from {0, . . . , r − 1} to the vertex that Alice

just played. Bob loses immediately if the colors assigned thus far do not form

a proper r-coloring of the graph.

Bob wins if the game goes on indefinitely without either player losing. This

definition of “game” can be made to conform to our earlier formal definition if Alice

plays a number a0 that codes the vertex and additional edges that she adds at each

stage.

Definition 1.2.4. If Bob has a winning strategy for this game G(C, r), we say that

the class C is on-line r-colorable.

In the context of graph theory, a tree will always mean a cycle-free graph. A forest

is a graph whose components are all trees. It is trivial that every forest is 2-colorable

— just take the levels in each tree component and color the odd levels red and the

even levels blue. However, the class of forests is NOT on-line colorable.
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Figure 1.2: A forest is not on-line 2-colorable.
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Figure 1.3: A forest is not on-line 3-colorable.

Proposition 1.2.5. The class of forests is not on-line r-colorable for any r ≥ 2.

Figure 1.2 and Figure 1.3 show the counterexamples for 2-colorings and 3-colorings.

Here Alice plays each vertex in numerical order, and Bob responds with a color

(shaded in the figure). When Alice plays vertex 5, she forces Bob to play a third color

by playing a vertex with a red neighbor and a blue neighbor. Note that if F2, F3 are

the forests pictured, then for each k, F2 ∩ {1, . . . , k} and F3 ∩ {1, . . . , k} are forests.

It should be clear from the two figures how to inductively define a counterexample

for r > 3 colors.

Let Pn be a path of length n, meaning that Pn has exactly n vertices v1, . . . , vn

with (vi, vi+1) ∈ E for 1 ≤ i < n, but (vi, vj) /∈ E for i+ 1 < j.

Proposition 1.2.6 (Gyárfás and Lehel [16]). Define C to be the class of all bipartite

14



graphs in Forb(P6). For any number of colors r ≥ 2, C is r-colorable but is not on-line

r-colorable.

Proof. All bipartite graphs are 2-colorable. For the on-line case, we construct a series

of graphs Gk; see Figure 1.4 for G2 and G3. G1 is a point; G2 connects 2 copies of G1.

G3 connects a new vertex x3 (at the bottom) to two copies of G1 and two copies of

G2, but in the first copy of G2, x3 connects to all vertices in the first bipartition, and

in the other it connects to all vertices in the second bipartition. G4 and the general

Gn are constructed in the same way, connecting a new vertex xn to two copies each

of G1, G2, . . . , Gn−1, connecting xn to one of the bipartitions in one copy and to the

other bipartition in the other copy.

It is easy to show inductively that Gn does not contain a copy of P6 (notice that

G3 does have a subgraph isomorphic to P5). We argue by strong induction that Alice

can force Bob to play n different colors in Gn. Assume this is true of G1, . . . , Gn−1.

Then when creating Gn, Alice will create two copies of G1, followed by two copies of

G2, and so on, until she creates two copies of Gn−1. When Bob chooses to play the

kth distinct color on vertex v, Alice will force v to be in the first or second copy of

Gk depending on what bipartition v is in. Then when Alice plays vertex xn at the

bottom, Bob is forced to play color n.

Example: On-line task scheduling

We give a short overview of another problem that we will explore in more detail

in Section 4.4. In this problem, we schedule a series of simultaneous tasks on k

multiprocessors. Tasks of varying processing time are announced by Alice, and Bob

must immediately choose one of his k machines for each task. Bob’s goal is to minimize

15



Figure 1.4: The graphs G2 and G3 in the proof of Proposition 1.2.6.

3
1
1 3
1 3 6

6
3 3 3
1 1 1

Figure 1.5: The optimal off-line solution (left) and on-line solution (right)

the total completion time, also called the makespan, which is the total time required

to complete all tasks. The makespan plays the role of “cost parameter” C described

above, with Bob seeking to minimize it and Alice seeking to maximize it. (This is

contrary to the graph coloring problem, where Alice seeks to prevent a proper coloring

entirely.) Of course, Bob has no knowledge the of future tasks’ processing times, or

(usually) how many more there will be, and he must optimize his choices accordingly.

Let us assume that there are k = 3 processors, and the sequence of tasks have

processing times (1, 1, 1, 3, 3, 3, 6). In Figure 1.5, each column represents a processor,

and the numbers are the processing times of tasks assigned to that processor. The

optimal processing time is clearly 6 — just schedule according to the left side of Figure

1.5. However, if the process stops before the final task, the optimal assignment (for

the entire process) is no longer optimal for the truncated process. Even after two

tasks, the optimal algorithm for the entire process places two tasks (of time 1) on the

left processor and zero on the others, which is double the optimal makespan for the

truncated process. That is, if we declare that Alice wins the game if the competitive
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ratio is ≥ 2, then Bob cannot schedule these tasks optimally at every stage of the

game, for Alice would win after two rounds.

Nevertheless, Bob can win against this sequence of plays by Alice, maintaining

a competitive ratio less than 2 at every stage. Any optimal on-line algorithm must

schedule the first three tasks (the 1’s) on three different processors. It is not hard to

see that Bob’s best on-line strategy is on the right side of Figure 1.5. The competitive

ratio is thus 10/6 ≈ 1.667.

This example alone shows that there is no hope of finding an on-line task schedul-

ing algorithm with competitive ratio ≤ 5/3. The most naive on-line algorithm is to

schedule each task on the machine with the current lightest load. Graham [14] showed

that this algorithm has competitve ratio 2− 1
k

where k is the number of processors.

Combining these results shows that there is an on-line algorithm with competitive

ratio in (5/3, 2]; as we will see in Section 4.4, Albers has improved these bounds to

(1.852, 1.923].
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Chapter 2

Introduction to Sequential Forms

and Prediction Principles

In Section 2.1, we introduce the main object we will be classifying, the sequential

form of a problem. We give some motivation and history, including the connection

with intuitionistic subsystems, where the strength of the sequential problem relates

to the question of whether we must use the Law of Excluded Middle to prove that

the problem is solvable.

In Section 2.2 we present the proofs of two examples: the sequential pigeonhole

principle and the sequential bipartition problem. Technically this section is redun-

dant, since the full classification theorem is proven in Chapter 3, but it illustrates the

method in the context of a specific sequential problem rather than in full generality.

Section 2.3 introduces our two prediction principles Predictk(r) and Evadek(r).

They are variants of DNR(k), and will be valuable tools in proving that certain se-

quential forms require WKL0. They were introduced (not by name) in Schmerl’s paper

[33] on the reverse mathematics of on-line graph colorings, where he showed that by

assuming ¬WKL0, we can find an infinite forest that is not 2-colorable. We discuss
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this example in Section 2.4.

2.1 Introduction to Sequential Forms

Many theorems in combinatorics, and in mathematics generally, are of the form

∀X(α(X)→ ∃Zβ(X,Z)) (†)

Consider the statement, “every finite graph without an odd cycle is bipartite”: it

has the above form with α(X) stating “X is a finite graph with no odd cycles,” and

β(X,Z) stating “Z is a bipartition of X.” Finite versions of Ramsey’s Theorem, the

pigeonhole principle, and the existence of a graph coloring are also statements of this

form.

Definition 2.1.1. Consider a statement of the form

∀X(α(X) → ∃Zβ(X,Z))

with X,Z both set variables. The sequential form of this statement is the following:

∀X (∀nα(Xn) → ∃Z∀nβ(Xn, Zn))

where X = 〈Xn〉n∈N and Z = 〈Zn〉n∈N.

According to the sequential form, if we are given a sequence X = 〈Xn〉n∈N of

objects in the theorem’s hypothesis (e.g. bipartite graphs) then there exists a sequence

Z = 〈Zn〉n∈N of witnesses for the theorem’s conclusion (e.g. bipartitions).

If the objects in question are finite, then the nonsequential statement is almost

certainly provable in RCA0, since one can computably find the finite object Z and
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verify the desired property. However, the sequential form, where we effectively prove

the finite theorem infinitely often, is often stronger, though ACA0 is always sufficient.

We show this in Proposition 2.1.4; the proposition’s hypothesis, that ACA0 suffices to

prove the nonsequential statement, is true of every statement we will consider. Also,

recall from section 1.1 that Dn is the nth finite set in a canonical ordering; specifically,

if A = {a0, . . . , ak}, then A = Dn where n = 2a0 + · · ·+ 2ak .

Definition 2.1.2 (RCA0). A finite set is a set X such that ∃k∀i(i ∈ X → i < k).

Definition 2.1.3 (RCA0). A sequence of finite sets 〈Xn〉n∈N is a subset A ⊆ N × N

such that for each n ∈ N, Xn = {x : (n, x) ∈ A} is finite.

Proposition 2.1.4. Let ϕ(A,B) be an arithmetical formula. Suppose that ACA0 `

if A is a finite set, there exists a finite set B such that ϕ(A,B). Then ACA0 ` if

〈Xn〉n∈N is a sequence of finite sets, there exists a sequence of finite sets 〈Yn〉n∈N such

that ∀nϕ(An, Bn).

Proof. Assume the hypothesis. We can use ACA0 to define a function b : N→ N that

gives an upper bound b(n) for each finite set Xn:

b(n) = m ↔
[

(m = 0 ∧ ∀x(x /∈ Xn)) ∨ (m− 1 ∈ Xn ∧ (∀k ≥ m)(k /∈ Xn))
]

Then, using the upper bounds, we can find a primitive recursive function f that

codes each finite set Xn as Df(n). (f(n) can be obtained from one of the finite

subsets of {0, . . . , b(n)}). Then we can use minimization to find the least en such that

ϕ(Df(n), Den) holds. Define Yn := Den and we are done.

Finding upper bounds for each Xn is crucial, since it allows us to answer questions

of the form (∀x ∈ Xn)ψ(x) or (∃x ∈ Xn)ψ(x). In fact, the problem of finding a
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sequence of upper bounds is in itself equivalent to ACA0:

Proposition 2.1.5. The following are equivalent over RCA0:

(i) ACA0

(ii) Given a sequence 〈Xn〉n∈N of finite sets, there is a sequence of upper bounds

〈bn〉n∈N such that ∀n∀x (x ∈ Xn → x ≤ bn).

Proof. (i) implies (ii) by the proof of Proposition 2.1.4. Assume (ii), and let A be an

oracle. We will show that the halting set relative to A exists, implying ACA0. Define

〈Xn〉n∈N by:

Xn = {s} if ΦA
n (n)↓ [s] ∧ (∀s′ < s) ¬(ΦA

n (n)↓ [s′])

Xn = ∅ otherwise

Note that 〈Xn〉n∈N is a computable sequence of sets. Then let 〈bn〉n∈N be the

sequence of bounds guaranteed by (ii). We can define a function h : N → {0, 1} by:

h(n) = 1 if there is s ≤ bn with ΦA
n (n) ↓ [s], h(n) = 0 otherwise. Then h(n) = 1 if

and only if ΦA
n (n) ↓; therefore, we can compute the Turing jump A′, implying ACA0.

The above proof makes use of the halting stage s of a Σ0
1-function to create a

witnessing example. This technique will play an important role in this thesis. It can

be counterintuitive, since 〈Xn〉n∈N is computable in that we can computably decide

whether a given k ∈ Xn, but no computable function can decide whether each Xn

has cardinality 0 or 1.
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2.1.1 Relationship with intuitionistic subsystems

Sequential forms help formalize the notion of a constructive proof. Intuitively, if our

nonsequential statement of form (†) can be proved constructively, then the sequential

form is provable in RCA0, for there exists a uniform algorithm that will find the full

sequence 〈Zn〉n∈N of witnesses for any infinite sequence 〈Xn〉n∈N of inputs. Conversely,

if the sequential form is strictly stronger than RCA0, that points to a certain lack of

uniformity in the original proof.

Making this notion precise involves considering subsystems with and without LEM,

the law of excluded middle. Subsystems that include LEM are called classical, and

subsystems that do not include LEM are called intuitionistic; all axiom subsystems

we have discussed have been classical.

Definition 2.1.6. LEM is the Law of Excluded Middle, which is the schema:

∀x(ϕ(x) ∨ ¬ϕ(x))

with an instance for each formula ϕ(x).

Intuitively, if a statement in the form (†) can be proved without LEM, then there

exists a constructive proof of this statement. Without the law of excluded middle,

we cannot break our argument up into “cases” and prove each instance separately

according to those cases; there must be a uniform procedure that will take any possible

input x and produce a correct witness z.

The analysis of proofs with and without LEM requires techniques from proof the-

ory, specifically the modified realizability of functions introduced by Kleene [28]. This

is outside the scope of this thesis, but see Definition 2.1 in Dorais [6] for an explicit

definition of Kleene’s realizability. Troelstra [39] introduced an intuitionistic subsys-

tem called EL0 that does not include the law of excluded middle. In fact,

22



Theorem 2.1.7 (Troelstra [39]).

RCA0 = EL0 + LEM

So in a sense EL0 is an intuitionistic analogue to RCA0.

Hirst and Mummert [22] and Dorais [6] have applied Kleene’s modified realiz-

ability to prove some general theorems about sequential forms, relating a statement’s

provability in intuitionistic subsystems to the sequential form’s provability in classical

subsystems. A major result of Dorais (Corollary 2.9 and Corollary 3.9 in [6]) is:

Theorem 2.1.8 (Dorais). Suppose that α(X) and β(X,Z) are formulas that satisfy

Condition Set Γ defined below.

(a) If

EL0 ` ∀X(α(X)→ ∃Zβ(X,Z))

then

RCA0 ` ∀X(∀nα(Xn)→ ∃Z∀nβ(Xn, Zn)).

(b) If

EL0 + WKL ` ∀X(α(X)→ ∃Zβ(X,Z))

then

WKL0 + BΣ0
2 ` ∀X(∀nα(Xn)→ ∃Z∀nβ(Xn, Zn)).

Taking the contrapositive, if a statement’s sequential form is strictly stronger than

RCA0, then the original statement does not have a constructive proof, and every proof

must necessarily make use of LEM. If a sequential form is equivalent to ACA0 (which

is strictly stronger than WKL0 + BΣ0
2), then even assuming WKL we cannot prove
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the original statement without using LEM. As mentioned above, there is a necessary

condition for Theorem 2.1.8:

Condition Set Γ. The following are conditions on α(X) and β(X,Z) for Theorem

2.1.8 to hold. For part (a), α(X) must belong to the syntactic class NK and β(X,Z)

must belong to the syntactic class ΓK . For part (b), α(X) must belong to the syntactic

class NL and β(X,Z) must belong to the syntactic class ΓL. We will not define these

four syntactic classes here, but definitions can be found in Dorais [6].

In all applications considered in this thesis, the statements α(X) and β(X,Z)

collectively assert that for every finite sequence of rational numbers ā there exists

a finite sequence of rational numbers b̄ such that some computable relation holds:

ā R b̄. (So syntactically, the relation R can be written both in a Σ0
1 form and in a Π0

1

form.) In these cases, α(X) and β(X,Z) are well within the syntactic requirements

for the above theorem to hold. See Definition 3.1.4 for the most common formulation

of our sequential problems.

Some results about sequential forms proved in Dorais, Hirst and Shafer [9], Fuji-

wara and Yokoyama [12], Hirst [21], and Hirst and Mummert [22] include:

Theorem 2.1.9.

• WKL0 ↔ Sequential Dichotomy of Reals: If 〈αn〉n∈N is a sequence of reals, there

is a set I ⊆ N such that ∀i [(i ∈ I → αi ≥ 0) ∧ (i /∈ I → αi ≤ 0)]. [9]

• ACA0 ↔ Sequential Trichotomy of Reals: If 〈αn〉n∈N is a sequence of nonnegative

reals, there is a set I ⊆ N such that ∀i (i ∈ I ↔ αi > 0). [9]

• WKL0 ↔ For every sequence 〈Xn〉n∈N of quickly converging Cauchy sequences

there is a sequence 〈Yn〉n∈N of Dedekind cuts such that Xi is equivalent to Yi for

all i ∈ N. [21]
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• ACA0 ↔ For every sequence 〈Mn〉n∈N of 2 × 2 real matrices, such that each

matrix Mn has only real eigenvalues, there are sequences 〈Un, Jn〉n∈N such that

(Ui, Ji) is a Jordan decomposition of Mi for all i ∈ N. [22]

• WKL0 ↔ For every sequence 〈fn〉n∈N of continuous functions fn : [−1, 1] → R,

there exists a sequence of maxima 〈an〉n∈N, an ∈ [−1, 1], such that fn(an) =

max
x∈[−1,1]

fn(x). [12]

• ACA0 ↔ For every sequence 〈fn〉n∈N of continuous functions fn : (−1, 1) → R

such that fn(0) > 0 and lim
x→±1

fn(x) = 0, there exists a sequence of maxima

〈an〉n∈N, an ∈ (−1, 1), such that fn(an) = max
x∈(−1,1)

fn(x). [12]

Dorais [6] and Hirst and Mummert [22] use the above examples to show that none

of the corresponding nonsequential statements can be proved without the use of LEM.

2.2 Two Easy Examples

The two theorems in this section will be generalized in Chapter 3, and so technically

the reader can skip this section and not miss any results. However, I include these

examples to show the basic technique of proving the strength of a sequential problem.

Theorem 2.2.1. The following are equivalent over RCA0:

(i) ACA0

(ii) The Sequential Finite Pigeonhole Principle: Given k ≥ 2 and a sequence

〈An, fn〉n∈N , where An is a finite set and fn : An → {0, 1, . . . , k − 1}, there is a

sequence 〈yn〉n∈N such that

∀n ( |{x ∈ An : fn(x) = yn}| ≥
|An|
k

).
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Proof. (i) implies (ii) by Proposition 2.1.4. Assume (ii). Let A be an oracle. We will

show that the halting set relative to A exists, implying ACA0.

Define 〈fn〉n∈N as follows: We always have

fn(0) = 0

fn(1) = 1 fn(2) = 1,

fn(3) = 2 fn(4) = 2,

· · ·

fn(2k − 3) = k − 1 fn(2k − 2) = k − 1.

If ΦA
n (n) ↓ [s] and s is the first stage at which it halts, then we also have

fn(2k + s) = 0 fn(2k + s+ 1) = 0.

Note that 〈fn〉n∈N is a computable sequence of functions.

Let 〈yn〉n∈N be the sequence guaranteed by (ii). Then yn = 0 if and only if ΦA
n (n)

halts. For if ΦA
n (n) halts, then

|{x ∈ An : fn(x) = 0}| = 3 > 2 +
1

k
=

2k + 1

k
=
|An|
k
.

If j > 0, then

|{x ∈ An : fn(x) = j}| = 2 < 2 +
1

k
=

2k + 1

k
=
|An|
k
.

Therefore, yn must be 0.
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On the other hand, if ΦA
n (n) does not halt, then

|{x ∈ An : fn(x) = 0}| = 1 < 2− 1

k
=

2k − 1

k
=
|An|
k

and so we must have yn > 0.

Therefore, yn = 0 if and only if ΦA
n (n) ↓, and we can compute the Turing jump

A′, which proves ACA0.

At first glance, the sequence 〈fn〉n∈N in the above proof may look noncomputable,

since we are modifying it if and only if Φn(n) ↓. However, we modify it if and only if

Φn(n) ↓ at a particular stage s, which is something we can compute. Our sequence

of functions is computable, but the problem of finding a sequence of complete lists of

ordered pairs in each fn is noncomputable.

Theorem 2.2.2. The following are equivalent over RCA0:

(i) WKL0

(ii) If 〈Gn〉n∈N = 〈Vn, En〉n∈N is a sequence of finite graphs without odd cycles, then

there is a sequence of bipartitions 〈jn〉n∈N, jn : Vn → {0, 1}, such that

∀n [ ∀v ∀w ({v, w}∈En → jn(v) 6= jn(w)) ].

Proof. (i)⇒ (ii): We can view 〈Gn〉n∈N as an infinite graph G = (V,E), with (n, v) ∈

V if and only if v ∈ Vn, and ((n, v), (n′, w)) ∈ E if and only if n = n′ and (v, w) ∈ En.

By Hirst [20], WKL0 proves that an infinite graph G with no odd cycles is bipartite.

Therefore, there exists j : V → {0, 1} such that ((m, v), (n,w)) ∈ E → j(m, v) 6=

j(n,w). Define jn : Vn → {0, 1} by jn(v) = j(n, v). Then (v, w) ∈ En implies
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Figure 2.1: Possible bipartite graphs in the proof of Theorem 2.2.2.

that ((n, v), (n,w)) ∈ E, which implies that j(n, v) 6= j(n,w); ı.e., jn(v) 6= jn(w) as

desired.

(ii) ⇒ (i): We prove Σ0
1-separation which is equivalent to WKL0; . Let f, g be

injections with disjoint ranges. Define a sequence of graphs 〈Gn〉n∈N = 〈Vn, En〉n∈N

as follows:

0, 1 are always in Vn. If f(k) = n, then k + 2, k + 3 are in Vn and (0, k +

2), (k + 2, 1), and (1, k + 3) are in En. If g(k) = n, then k + 2, k + 3 are in Vn and

(0, k + 2), (k + 2, k + 3), and (1, k + 3) are in En. Vn and En are always computable

from f, g. See Figure 2.1.

Let 〈jn〉n∈N be the sequence of bipartitions given by (ii). Define h : N → {0, 1}

by h(n) = 1 if jn(0) = jn(1), and h(n) = 0 otherwise. Then if n is in the range of

f , h(n) = 1, and if n is in the range of g, h(n) = 0. If n is not in either range, then

since 0, 1 are disconnected from each other, h(0) and h(1) could be either 0 or 1. It

is clear that h gives a separating set for f and g, which proves WKL0.

If you assume that all Gn are connected, then the sequential bipartition theorem

can be proved constructively in RCA0. Namely, given a ∈ Vn, to find jn(a), first find

the smallest natural number in Vn, call it a0, then enumerate Vn and En until we have

a path from a0 to a. If a = a0, let jn(a) = 0; otherwise, if the path has odd length let
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jn(a) = 0, and if the path has even length let jn(a) = 1. Since Gn has no odd cycles,

each jn is well-defined and has the desired properties.

As a consequence of Theorem 2.1.8, we have:

Corollary 2.2.3. The nonsequential versions of Theorems 2.2.1 and 2.2.2 are not

consequences of EL0, ı.e., neither can be proved without the law of excluded middle.

Moreover, the nonsequential Pigeonhole Principle (2.2.1) is not a consequence of EL0+

WKL.

2.3 The Principles Predictk(r) and Evadek(r)

This section is joint work with Dorais.

Recall from Section 1.1 that DNR is the principle that asserts the existence of a

diagonally nonrecursive function, ı.e., a function g : N → N with ∀e(g(e) 6= Φe(e)),

avoiding every recursive function at at least one point. The related principle DNR(r)

also asserts that the range of g is bounded by r:

Definition 2.3.1. Let r ≥ 2. DNR(r) is the statement that for any oracle A, there

exists g : N→ r such that

∀e
(
g(e) 6= ΦA

e (e)
)

While WKL0 is stronger than DNR, it is equivalent to DNR(r) for standard r:

Theorem 2.3.2 (Jockusch and Soare [26]). For 2 ≤ r < ω, RCA0 ` (DNR(r) ↔

WKL0).

In [8], Dorais, Hirst, and Shafer prove that in models where IΣ0
2 fails, Theorem

2.3.2 is not necessarily true when r is nonstandard:

Theorem 2.3.3 (Dorais, Hirst, and Shafer). RCA0 + BΣ0
2 + ∃rDNR(r) 0 WKL0.
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If we replace BΣ0
2 with IΣ0

2, then Theorem 2.3.3 is false. In any model of RCA0+IΣ0
2,

∃rDNR(r) is indeed equivalent to WKL0.

In our upcoming paper [7], Dorais and I introduce two new principles, Predictk(r)

and Evadek(r). These principles have not been defined in the literature before, though

Schmerl did use them implictly in [33], as we will see more clearly in Section 2.4.

Evadek(r) is related to DNR(r), and at first appears to be a weakening of DNR(r),

but in most cases they are actually equivalent. Predictk(r) is the negation of Evadek(r).

Definition 2.3.4. Predictk(r) is the following statement:

There is a sequence 〈h0, . . . , hk−1〉 of partial Σ0
1-functions hi : Di+1 → {0, . . . , r−1}

whose domains form a nested sequence of Σ0
1-sets

D0 = N ⊇ D1 ⊇ · · · ⊇ Dk

such that if 〈f0, . . . , fk−1〉 is any sequence of partial Σ0
1-functions fi : Di → {0, . . . , r−

1} then there is an x ∈ Dk such that fi(x) = hi(x) for all i < k.

In other words, the hi’s can “predict” each set of fi’s one might choose, at at least

one value. This is a bold statement, since we can choose the fi’s to be whatever we

want, and in fact it is more than just bold. It is false in any model of full second-order

arithmetic.

Notice that the Σ0
1 symbols are in boldface. This means that there is an oracle

A and a sequence of partial Σ0,A
1 -functions 〈h0, . . . , hk−1〉, such that for any oracle B

and any sequence of partial Σ0,B
1 -functions 〈f0, . . . , fk−1〉, the conclusion holds. Also

observe that for each i, fi is defined on a larger domain than hi.

In Subsection 2.3.1, we will see that if any sequence of partial A-computable

functions 〈h0, . . . , hk−1〉 witnesses Predictk(r), then there is a particular sequence

〈∆A
0 , . . . ,∆

A
k−1〉 that witnesses it. Most references to Predictk(r) beyond this section
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make use of the ∆A
i ’s. See Definition 2.3.14 and Theorem 2.3.15.

Definition 2.3.5. Evadek(r) is the negation of Predictk(r) : Given any sequence

〈h0, . . . , hk−1〉 of partial Σ0
1-functions hi : Di+1 → {0, . . . , r− 1} whose domains form

a nested sequence

D0 = N ⊇ D1 ⊇ · · · ⊇ Dk,

there is a sequence 〈f0, . . . , fk−1〉 of partial Σ0
1-functions fi : Di → {0, . . . , r−1} such

that for every x ∈ Dk we have fi(x) 6= hi(x) for some i < k.

Evadek(r) asserts that for every such sequence 〈h0, . . . , hk−1〉, there is a sequence

〈f0, . . . , fk−1〉 such that each point in the common domain Dk “evades”at least one

of the hi’s. This statement recalls the diagonal non-recursion property, and for k =

1, it is easy to see that they are equivalent:

Proposition 2.3.6 (RCA0). For every r ≥ 2, DNR(r)↔ Evade1(r).

Proof. To see that Evade1(r) implies DNR(r), given an oracle A, apply Evade1(r) to

the partial Σ0,A
1 -function

h0(x) =


ΦA
x (x) when ΦA

x (x)↓ < r

↑ otherwise,

to obtain a function f0 : N → {0, . . . , r − 1} such that f0(x) 6= ΦA
x (x) whenever

ΦA
x (x)↓.

To see that DNR(r) implies Evade1(r), assume DNR(r) and suppose on the contrary

that h0 : D1 → {0, . . . , r−1} and D0 = N ⊇ D1 witness Predict1(r) (ı.e., ¬Evade1(r)).

Let A be an oracle such that h0 is a partial A-computable function. By the relativized

s-m-n theorem, there is a primitive recursive injection s : N → N such that h0(x) =

ΦA
s(x)(y) for all x, y ∈ N. If f : N→ {0, . . . , r− 1} is any function, then by Predict1(r)
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there is an x ∈ D1 such that f(s(x)) = h0(x) = ΦA
s(x)(s(x)). Thus, s(x) witnesses that

f does not satisfy DNR(r) relative to A.

It is easy to see that if k ≤ ` then Evadek(r) implies Evade`(r) and, contrapositively,

Predict`(r) implies Predictk(r). Similarly, if r ≤ s then Evadek(r) implies Evadek(s)

and, contrapositively, Predictk(s) implies Predictk(r). We have thus seen that for all

k and r, 1 ≤ k < ω, 2 ≤ r < ω, RCA0 proves that

WKL0 ↔ DNR(r)↔ Evade1(r)→ Evadek(r)

so we clearly have that Evadek(r) is true, and Predictk(r) is false, in any model of full

second-order arithmetic.

For standard k, the reverse implication is also true: Evadek(r)→ Evade1(r). The

next two propositions will help us prove this.

Proposition 2.3.7 (RCA0). For all k, `, r ≥ 1, Predictk`(r) implies Predictk(r
`). Con-

trapositively, Evadek(r
`) implies Evadek`(r).

Proof. Suppose 〈h0, . . . , hk`−1〉 is a sequence of partial Σ0
1-functions hj : Dj+1 →

{0, . . . , r − 1} that witness Predictk`(r). For i ≤ k, let D′i = Di` and let h′i : D′i+1 →

{0, . . . , r` − 1} be defined by

h′i(x) =
`−1∑
j=0

hi`+j(x)rj.

Given a sequence 〈f ′0, . . . , f ′k−1〉 of partial Σ0
1-functions f ′i : D′i → {0, . . . , r` − 1},

define fj : Dj → {0, . . . , r− 1} for j < k` in such a way that if i < k and m < `, then

m∑
j=0

fi`+j(x)rj ≡ f ′i(x) (mod rm+1)
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for x ∈ Di`+m. If x ∈ D′k = Dk` is such that fj(x) = hj(x) for all j < k`, then also

f ′i(x) = h′i(x) for all i < k.

Corollary 2.3.8 (RCA0). For all k and r, DNR(rk)→ Evadek(r).

Proof. This follows from Propositions 2.3.6 and 2.3.7.

Proposition 2.3.9 (RCA0). For all k and r, Predictk(r) implies Predict2k(r). Con-

trapositively, Evade2k(r) implies Evadek(r).

Proof. Let 〈h0, . . . , hk−1〉 and D0, . . . , Dk be as in Predictk(r). For i < k, define

D′i+1 = {〈x, y〉 : x ∈ Di+1}, D′k+i = {〈x, y〉 : x ∈ Dk, y ∈ Di},

and

h′i(〈x, y〉) = hi(x), h′k+i(〈x, y〉) = hi(y).

We claim that the sequence h′0, . . . , h
′
2k−1 witnesses Predict2k(r).

Suppose 〈f ′0, . . . , f ′2k−1〉 is a sequence of partial Σ0
1-functions f ′i : D′i → {0, . . . , r−

1}. Given any y ∈ N, it follows from Predictk(r) that there is some x ∈ Dk such

that f ′i(〈x, y〉) = hi(x) = h′i(〈x, y〉) for all i < k. Represent this relationship with a

function f : N→ Dk such that f(y) = x; this function exists in our model. Consider

the functions fi : Di → {0, . . . , r − 1} defined by fi(y) = f ′k+i(〈f(y), y〉). It follows

from Predictk(r) that there is some y0 ∈ Dk such that fi(y0) = hi(y0) for i < k. We

then have

f ′i(〈f(y0), y0〉) = hi(f(y0)) = h′i(〈f(y0), y0〉)

and

f ′k+i(〈f(y0), y0〉) = fi(y0) = hi(y0) = h′k+i(〈f(y0), y0〉)
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for all i < k.

Corollary 2.3.10 (RCA0). For all k and r, Predictk(r) implies Predictk(r
2) and

Evadek(r
2) implies Evadek(r).

Proof. This follows from Propositions 2.3.7 and 2.3.9.

Remark 2.3.11. In the proofs of both Proposition 2.3.7 and Proposition 2.3.9, we

construct new witnessing functions that are Σ0,A
1 relative to the same oracle A as

our initial functions. By this we mean: if the given functions in Proposition 2.3.7

that witness Predictk`(r) are Σ0,A
1 -functions, then the functions we construct that

witness Predictk(r
`) are also Σ0,A

1 ; in Proposition 2.3.9, if the given functions that

witness Predictk(r) are Σ0,A
1 -functions, then the functions we construct that witness

Predict2k(r) are also Σ0,A
1 .

Corollary 2.3.12 (RCA0). For every k, r, 1 ≤ k < ω, 2 ≤ r < ω, Predict1(2) implies

Predictk(r).

Proof. This follows from repeated application of Proposition 2.3.9 and Corollary

2.3.10.

And finally we have a significant corollary about the strength of Evadek(r) for

every standard k, r:

Corollary 2.3.13 (RCA0). For every k, r, 1 ≤ k < ω, 2 ≤ r < ω, Evadek(r)↔ WKL0.

Proof. Collectively, Theorem 2.3.2, Proposition 2.3.6, and Corollary 2.3.12 state that

WKL0 ↔ DNR(2)↔ Evade1(2)↔ Evadek(r).

34



2.3.1 Existence of canonical witnesses

We now show, by an argument due to Dorais, that for every oracle A and parameters

k, r there is a canonical choice of partial A-computable functions 〈h0, . . . , hk−1〉 that

witness Predictk(r) if any such functions witness Predictk(r). We will call this sequence

〈∆A
0 , . . . ,∆

A
k−1〉. This will be useful to us, for if we wish to show that Evadek(r) holds,

it suffices to show that no 〈f0, . . . , fk−1〉 sequence exists for this particular sequence

of ∆A
i ’s.

Definition 2.3.14 (RCA0). Let pi be the (i+1)st prime number and, let νi(x) denote

the exponent of pi in the prime factorization of x+ 1. Given an oracle A, define

∆A
i (x) =


ΦA
νi(x)(x) if ΦA

νj(x)(x)↓ for all j ≤ i,

↑ otherwise.

Also, let UA
i+1 = dom(∆A

i ) and UA
0 = N.

Proposition 2.3.15 (Dorais, RCA0). For all k, r and every set A, if Predictk(r) is

witnessed by some sequence of partial A-computable functions, then ∆A
0 , . . . ,∆

A
k−1 wit-

ness Predictk(r). More precisely, it is the restrictions of ∆A
0 , . . . ,∆

A
k−1 to the inverse

image of {0, . . . , r − 1} that witness Predictk(r).

The second statement is technically necessary, since Predictk(r) asserts the exis-

tence of a sequence of partial Σ0
1-functions with range {0, . . . , r − 1}.

Proof. Suppose hi : Di+1 → {0, . . . , r − 1}, i < k, is a sequence of partial A-

computable functions that witness Predictk(r). By the relativized s-m-n theorem,

there are primitive recursive injections s0, . . . , sk−1 such that hi(x) = ΦA
si(x)(y) for

all x, y ∈ N. Define s(x) = p
s0(x)
0 · · · psk−1(x)

k−1 − 1, which is also a primitive recursive
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injection. Note that since

N = D0 ⊇ D1 ⊇ · · · ⊇ Dk,

we then have

∆A
i (s(x)) = ΦA

si(x)(s(x)) = hi(x)

for all x ∈ Di+1 and ∆A
i (s(x))↑ when x /∈ Di+1. In particular, s(x) ∈ UA

i+1 iff x ∈ Di+1.

Suppose fi : UA
i → {0, . . . , r − 1}, i < k, is a sequence of partial Σ0

1-functions.

Then, the composite functions f ′i(x) = fi(s(x)) form a sequence of partial Σ0
1-

functions f ′i : Di → {0, . . . , r− 1}. Therefore, by hypothesis that h0, . . . , hk−1 witness

Predictk(r), there is an x ∈ Dk such that

fi(s(x)) = f ′i(x) = hi(x) = ∆A
i (s(x))

for all i < k. It follows that ∆A
0 , . . . ,∆

A
k−1 also witness Predictk(n).

Theorem 2.3.16 (RCA0+IΣ0
2). For every r ≥ 1, Predict1(r) implies (∀k ≥ 1)Predictk(r).

Proof. Fix r ∈ N, and assume that Predict1(r) holds. By Proposition 2.3.15, there is

an oracle A such that 〈∆A
0 〉 witnesses Predict1(r). Let k ∈ N be such that Predictk(r)

fails, and so certainly 〈∆A
0 , . . . ,∆

A
k−1〉 does not satisfy the hypotheses of Predictk(r).

Let 〈f0, . . . , fk−1〉 be a Σ0
1-sequence of functions witnessing this failure of Predictk(r)

in the 〈∆A
i 〉i<k sequence. So fi : Ui → {0, . . . , r − 1}, and for each x ∈ UA

k there is

i < k such that fi(x) 6= ∆A
i (x).

For j ∈ N, define Θ(j) as follows: There exists i ≥ j such that for all x ∈ UA
k−i,

we have

(
f0(x), f1(x), . . . fk−1−i(x)

)
6=
(
∆A

0 (x),∆A
1 (x), . . . ,∆A

k−1−i(x)
)

36



Notice that Θ(j) is a Σ0
2-statement. By hypothesis, we have Θ(0) is true. However,

Θ(k − 1) must be false, since this would mean that for all x ∈ UA
1 , we have f0(x) 6=

∆A
0 (x), which would contradict that 〈∆A

0 〉 witnesses Predict1(r).

By IΣ0
2, since ∀jΘ(j) fails and since Θ(0) holds, there exists j0 such that Θ(j0) ∧

¬Θ(j0 + 1) holds.

Then the sequence 〈f0, . . . , fj0+1〉 does witness that Predictj0+2(r) fails for

〈∆A
0 , . . . ,∆

A
j0+1〉, but 〈f0, . . . , fj0〉 does not witness the failure of Predictj0+1 for 〈∆A

0 , . . . ,∆
A
j0
〉.

Thus we have that ∆A
j0+1 : Uj0+2 → {0, . . . , r − 1}, fj0+1 : Uj0+1 → {0, . . . , r − 1},

and for any x ∈ Uj0+2, fj0+1(x) 6= ∆A
j0+1(x). We claim that this witnesses the failure

of Predict1(r).

To prove our claim, we revisit the proof of Proposition 2.3.15; recall the formal

definitions of the ∆A
i ’s from this proof. Suppose h : D1 → {0, . . . , r − 1} witnesses

Predict1(r). By the relativized s-m-n theorem, there is a primitive recursive injection

s0 such that h(x) = ΦA
s0(x)(y) for all x, y ∈ N. Define s(x) = p0 · p1 · · · pj0 · p

s0(x)
j0+1 − 1.

Then ∆A
j0+1(s(x)) = ΦA

s0(x)(s(x)) = h(x). In particular, s(x) ∈ Uj0+2 iff x ∈ D1.

The composite function g(x) = fj0+1(s(x)) is a function g : N → {0, . . . , r − 1}

and we have shown that for any x ∈ Uj0+2 we have fj0+1(x) 6= ∆A
j0+1(x). Let x ∈ D1

be arbitrary; then s(x) ∈ Uj0+2 and

g(x) = fj0+1(s(x)) 6= ∆A
j0+1(s(x)) = h(x)

hence we have shown that Predict1(r) fails, a contradiction. So our original assumption

was wrong, and Predictk(r) holds. This completes the proof.

Theorem 2.3.17 (RCA0+IΣ0
2). For every k ≥ 1, Predictk(2) implies (∀r ≥ 1)Predictk(r).

Proof. Assume Predictk(2). If Predictk(2
r) fails, then Predictkr(2) fails by Corollary
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2.3.8, and so Predict1(2) fails by Theorem 2.3.16, and so clearly Predictk(2) fails, a

contradiction.

Corollary 2.3.18 (RCA0 + IΣ0
2). Predict1(2) implies (∀k, r ≥ 1)Predictk(r).

Proof. This follows from Theorem 2.3.16 and Theorem 2.3.17.

Corollary 2.3.19. The following are each equivalent to WKL0 over RCA0 + IΣ0
2 :

• Evade1(2) or, equivalently, DNR(2).

• (∃r ≥ 1)Evade1(r) or, equivalently, (∃r ≥ 1)DNR(r).

• (∃k ≥ 1)Evadek(2)

• (∃k, r ≥ 1)Evadek(r)

We should not be surprised that IΣ0
2 is necessary for the last three statements.

As mentioned earlier, Dorais, Hirst, and Shafer [8] showed that ∃rDNR(r) is strictly

weaker than WKL0, even if we assume BΣ0
2. Since ∃r Evade1(r) implies ∃r Evade1(2r),

which in turn implies ∃r Evader(2) by a uniform application of Proposition 2.3.7, we

know that ∃k Evadek(2) is also strictly weaker than WKL0. The reverse implication is

less clear, and its negation seems plausible:

Conjecture 2.3.20.

RCA0 + BΣ0
2 + ∃kEvadek(2) 0 ∃rDNR(r)
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WKL0 Evadek(r) DNR(r)

∃rDNR(r)

∃kEvadek(2)

DNR

RCA0

Strict?

Figure 2.2: Relationships between prediction principles in models of RCA0 + BΣ0
2.

Optimality of Friedberg’s Lemma

Friedberg’s Lemma, introduced in Jockusch [24], states that every r2-bounded DNR

function computes an r-bounded DNR function, and that this can be proven in RCA0.

Of course, we can apply the lemma repeatedly and conclude that every rk-bounded

DNR function computes an r-bounded DNR function for every k ≥ 1. Dorais has

proven that this is optimal : If `(k, r) and s(k, r) are primitive recursive functions

such that

RCA0 ` (∀k, r ≥ 1) (Predictk(r)→ Predict`(k,r)(s(k, r)))

then we have

`(k, r) log s(k, r)

k log r

is bounded. Fixing `(k, r) = k for the moment gives that s(k, r) ≤ rb for some bound

b.
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The proof of this will be in our upcoming paper [7], but will not be included here.

Let us instead turn to another application of the prediction principles: the analysis

of colorability of different classes of graphs.

2.4 Prediction and On-Line Graph Colorability

One well-known theorem in computable graph theory is due to Gasarch and Hirst

[13]: WKL0 is equivalent to the statement that every locally r-colorable graph is r-

colorable. It follows that there exists a computable graph that is locally r-colorable,

but which does not have a computable r-coloring.

Definition 2.4.1. Let r ≥ 2. A graph G = (V,E) is locally r-colorable if for every

finite V0 ⊆ V , the induced subgraph (V0, E ∩ (V0 × V0)) is r-colorable.

Schmerl improved this result, showing that we can replace the two color parame-

ters with any fixed standard `, r.

Theorem 2.4.2 (Schmerl [32]). Fix `, r with 2 ≤ ` ≤ r < ω. Then WKL0 is equivalent

to the statement that every locally `-colorable graph is r-colorable.

So in models of ¬WKL0, there exist graphs that are locally `-colorable but not

r-colorable for arbitrarily high r < ω.

In his subsequent paper [33], Schmerl considered which classes of graphs are com-

putably colorable. Certainly one can imagine classes of graphs, such as the class of

(connected) trees, which are provably colorable in RCA0. But is there a wide variety

of classes of graphs, each of which contains a locally `-colorable graph that is not glob-

ally r-colorable? Schmerl’s paper [33] brought together the main ideas of this thesis

for the first time, for the answer to this question depends on the on-line r-colorability

of the class of graphs.
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The definition of an on-line r-colorable class of graphs was given in Section 1.2;

recall that it means that Bob (Player 2, the colorer) has a winning strategy in the game

G(C, r). Recall also that a universal class C of graphs is closed under isomorphisms

and is such that G ∈ C if and only if every finite induced subgraph of G is in C. A

natural class of graphs is also closed under disjoint sums.

Definition 2.4.3. Let C be a class of graphs, and p < ω. Let C(p) be the subclass

of C consisting of all graphs G in C all of whose components have no more than p

vertices.

Here is Schmerl’s significant result relating a graph’s on-line colorability to its

global colorability in the absence of WKL0:

Theorem 2.4.4 (Schmerl, Theorem 2.1 in [33]). Let r < ω. Let C be a natural class

of graphs with a primitive recursive definition, and suppose that C is not on-line r-

colorable. Then there is p < ω such that the following is provable in RCA0 +¬WKL0:

There is a graph G in C(p) that is not r-colorable.

An alternative way to state the hypothesis is: “Suppose that there is r < ω such

that Alice has a winning strategy in G(C, r).”

Recall that ¬WKL0 ↔ Predictk(r) for 1 ≤ k < ω, 2 ≤ r < ω. To prove Theorem

2.4.4, Schmerl makes use of Predictk(r), though he did not call it that by name, after

proving that Predictk(r) holds in models of RCA0 +¬WKL0. The value of k here is the

number of vertices that are required in the game G(C, r) before Alice is guaranteed

to defeat any play by Bob. This value k is also equal to p in the statement of the

theorem, for all components of Alice’s winning graph will have size at most p = k.

We reproduce Schmerl’s proof below, with some details and notations slightly

changed. First, however, we must show that the k (= p) from the previous paragraph

exists, and so we prove a couple of lemmas on the determinacy of the game.
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Lemma 2.4.5 (Schmerl, essentially Lemma 1.1 in [33],). Let C be a natural class

of graphs with a primitive recursive definition, and let r < ω. If Bob has a winning

strategy in Gk(C, r) for every k < ω, then Bob has a winning strategy in G(C, r).

Proof. We will define a tree T of winning strategies for Bob. Each node of T on

level j will encode Bob’s response to every possible sequence of plays by Alice, where

Alice’s jth play is a binary sequence < 2j that encodes whether Alice’s jth vertex is

connected to each of Alice’s j − 1 previous vertices. (The actual vertex played is not

needed in this encoding.)

If σ ∈ T , then σ(j) is a sequence 〈cj,0, cj,1, . . . , cj,N−1〉, such that N is the number

of possible sequences of Alice’s plays in rounds 0 through j, and cj,i ∈ ( {0, . . . , r−1} )j

is Bob’s valid sequence of colors (ı.e., the resulting coloring is proper) to Alice’s ith

sequence of vertices and edge relations, in some canonical ordering. This is, of course,

assuming that when Alice played the first j′ < j plays in her ith sequence, Bob played

the corresponding cj′,i′ encoded in σ(j′), which is σ(j)’s predecessor on level j′ of the

tree.

If for even one i, 0 ≤ i < N , Bob does not have a winning response, then the tree

has a dead end, and σ(j) is undefined.

By assumption, Bob has a winning strategy in G(C, r) for every j. This means

that T is infinite, and an infinite branch of T would clearly encode a full winning

strategy for Bob in G(C, r).

The tree is also bounded. Suppose that σ(j) is a sequence of length N and its

code has value M . I claim that in the recursive function h(j, r) defined below, h(j, 0)

is a bound for N (number of possible plays for Alice in the first j steps) and h(j, 1)

is a bound for M (coded value of the sequence of possible responses by Bob in round

j):
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h(0, 0) = 20

h(0, 1) = rh(0,0)

h(1, 0) = h(0, 0) · 21

h(1, 1) = rh(1,0)

· · ·

h(j, 0) = h(j − 1, 0) · 2j

h(j, 1) = rh(j,0)

Weak König’s Lemma shows that this tree has an infinite path, and this path will

encode a winning strategy for Bob in G(C, r).

Note: We could have proved the above lemma in WKL0, except that in our as-

sumptions, we would have to replace “for every k < ω” with “for every k ∈ N.” In

the proofs of Corollary 2.4.7 and Theorem 2.4.4, it is the former that will be required.

Lemma 2.4.6 (RCA0). Let C be a natural class of graphs with a primitive recursive

definition, and let k, r ∈ N. Then Gk(C, r) is determined.

Proof. Since Alice’s plays (edge relations) and Bob’s plays (colorings) are bounded—

specifically, their respective jth plays are bounded by 2j and r—Bob’s full tree of

strategies is bounded and computable. (Alice’s actual set of vertex choices is not

bounded, but that is not necessary for this proof.)

So we can perform a search for a winning strategy for Bob through the whole

tree, and we will have an answer in finite time. If we do not come up with a winning

strategy, then Alice has a winning strategy. Namely, play a0 such that Bob does not

have a winning strategy above a0, and in general play ai such that Bob does not have

a winning strategy above ai. We can computably find this sequence ā of plays, and ā
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will hence be a winning play for Alice.

Corollary 2.4.7. Let C be a natural class of graphs with a primitive recursive def-

inition, and let r < ω. Then G(C, r) is determined. In fact, if Bob does not have

a winning strategy in G(C, r), then there exists k < ω such that Alice has a winning

strategy in Gk(C, r).

Proof. If Bob does not have a winning strategy in G(C, r), then Lemma 2.4.5 implies

that there exists k ∈ N such that Bob does not have a winning strategy in Gk(C, r).

Then Lemma 2.4.6 implies that Alice has a winning strategy in Gk(C, r), and hence

in Gk(C, r).

Again, we could prove the above corollary in WKL0, except that we would have

to replace “there exists k < ω” with “there exists k ∈ N.”

We are ready to present Schmerl’s proof of Theorem 2.4.4. We will generalize this

proof in Theorem 3.2.5, which will look beyond graph colorings and prove a similar

statement about any on-line problem.

Proof of Theorem 2.4.4. We construct an infinite graph with finite components, G =

(N × N, E), such that (n, x) E (n′, y) ⇒ n = n′. Let Gn = {(n, x) : x ∈ N}; the

previous statement shows that Gn and Gn′ are disconnected from each other, n 6= n′.

Let k < ω be such that Alice has a winning strategy in k rounds of the game G(C, r);

such a k exists by Corollary 2.4.7. We will construct G so that Gn = Hn ∪ In, where

Hn is a graph of size at most k, and In is a graph with no edges, so that the full graph

G is in the class C(k).

Assume RCA0 +¬WKL0, which means that Predictk(r) holds. We will define each

graph Gn in terms of the canonical predictors 〈∆A
i 〉i<k defined in Definition 2.3.14.
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Assume without loss of generality that if ∆A
i+1(n) ↓ [s], then ∆A

i (n) ↓ [s′] with s′ < s.

For each Hn, always start by putting v0 = (n, 0) ∈ Hn. Let 0 ≤ i < k; we now

define the (i+1)st vertex vi+1 of Hn. Assume that ∆A
i (n) ↓ [s] for the first time; recall

that the range of ∆A
i (n) is {0, . . . , r−1}. If it happens that ∆A

0 (n), ∆A
1 (n), . . . , ∆A

i (n)

constitute a valid coloring of the vertices v0, . . . , vi, then connect vi+1 = (n, s + 1)

to the other vertices (n, 0) = v0, v1, . . . , vi in Hn by using Alice’s winning strategy

against Bob’s playing ∆A
0 (n), . . . ,∆A

i (n) in the first i rounds. If it does not constitute

a valid coloring, then do not connect vi+1 = (n, s + 1) to any other vertices, and

declare that vi+1 /∈ Hn. Our full graph G will be computable, and so it will exist in

our model.

Suppose for a contradiction that χ : N× N→ r is a valid r-coloring of G. Define

〈fi〉i<k as in the statement of Predictk(r) by fi(n) = χ(n, vi) for vi ∈ Hn. Notice that

the fi’s are Σ0
1-functions relative to A and χ, and that dom fi+1 = Ui+1 = dom ∆A

i ,

for vi+1 ∈ Hn is defined until ∆A
i (n) refuses to halt. By Predictk(r), there exists a

particular n such that fi(n) = ∆A
i (n) for all i < k. This means in particular that

there are a total of k vertices in Hn, namely v0, . . . , vk−1, and that χ constitutes a

valid coloring on Hn. This means that if ai encodes vi and the edge relation with the

previous vertices, we have 〈a0, χ(v0), a1, χ(v1), . . . , ak−1, χ(vk−1)〉 is an outcome of

the game G(C, r) in k rounds that uses Alice’s winning strategy, but is not winning

for Alice, which is a contradiction.

Therefore, no such valid coloring χ exists, and G is a graph in C(k) that is not

r-colorable.

The final thing to notice about Schmerl’s construction is that it is a sequential

graph construction in disguise. An infinite graph whose components have size at most

k is essentially a sequence of finite graphs with a uniform bound k on the number of
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vertices. In fact, it takes a very minimal amount of proof modification to prove:

Theorem 2.4.8 (modified from Schmerl). Let r < ω. Let C be a natural class of

graphs with a primitive recursive definition, and suppose that C is not on-line r-

colorable. Then there exists k < ω such that if RCA0 + ¬WKL0 holds, there exists a

sequence of finite graphs 〈Gn〉n∈N, Gn ∈ C(k), such that there does not exist a sequence

〈χn〉n∈N with χn a valid coloring χn : Vn → r.

2.4.1 Schmerl’s Example: A Non-2-Colorable Forest

In Section 1.2, we saw that the class of forests is not on-line 2-colorable, and in

fact is not on-line r-colorable for any r < ω. Of course, any forest is 2-colorable,

and by Theorem 2.4.2, WKL0 is sufficient to prove this, since every forest is locally

2-colorable. But Theorem 2.4.4 shows that WKL0 is also necessary:

Corollary 2.4.9 (Schmerl). Let r < ω. Then the following is provable from RCA0 +

¬WKL0: There is a forest that is not r-colorable.

We also saw another class in Section 1.2 that is not on-line 2-colorable: the class

of bipartite graphs that avoid the path P6 of length 6. Bipartite graphs are locally

2-colorable, of course, and so WKL0 will suffice to prove that they are also 2-colorable.

Once again the assumption of WKL0 was actually necessary:

Corollary 2.4.10. Let r < ω. Then the following is provable from RCA0 + ¬WKL0:

There is a locally 2-colorable graph in Forb(P6) that is not r-colorable.
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Chapter 3

Characterizing the

Reverse-Mathematical Strength of

Sequential Problems

In this central chapter, we completely characterize the reverse-mathematical strength

of a finite sequential problem.

In Section 2.4 we saw that if a class C of graphs is not on-line r-colorable, then

WKL0 is necessary to show that every infinite graph in C is r-colorable. In this chapter

we generalize this, and show that the dividing line between RCA0 and WKL0 for a

generic sequential problem is indeed on-line solvability.

Our first duty is to find a definition scheme that is capable of expressing all finite

sequential problems in terms of a 2-player game. That is done in Section 3.1 below.

All sequential problems can be viewed as a two-player game, even those cases (e.g.

pigeonhole) that cannot possibly be on-line solvable. Section 3.2 is where we show

that all bounded problems that are on-line solvable have sequential versions provable

in RCA0, whereas all standard-length problems that are not on-line solvable require
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WKL0 or something stronger.

Separating WKL0 from ACA0 requires a different set of concepts for its dividing

line. We say that a problem has a solvable closed kernel if it has a solution, all of

whose initial segments are solutions to the truncated problem. (The precise definition

of this is in Section 3.1.) We will show that in a semi-bounded problem with a solvable

closed kernel, WKL0 suffices to prove the sequential version. If the closed kernel is

not solvable, that is, if there is a length-k instance all of whose solutions fail at some

initial segment, then ACA0 is necessary to prove the sequential version if k is standard.

If k is nonstandard, we will show that ACA0 is necessary if we also assume IΣ0
2.

This separation is proved in Section 3.3. To prove it, we refine another technique

of Schmerl’s, using a device that we call a good-for-uniform k-tuple, whose existence is

equivalent to ¬ACA0 for standard k. Schmerl introduced a similar concept in [34], but

extending his construction to nonstandard k appears to require IΠ1
1. In Subsection

3.3.5, we will show that Schmerl’s construction at the very least require IΣ0
2. Schmerl

applied this concept to prove results about Grundy colorings of graphs. In Section

3.4, we slightly improve his results.

3.1 Definitions related to sequential problems

By a tree we always mean a subtree of N<N. If A and B are trees then A⊗B denotes

the set of all pairs (ā, b̄) ∈ A×B such that lh(ā) = lh(b̄).

Definition 3.1.1. A problem is a triple (A,B,R) where A and B are trees and

R ⊆ A⊗B.

We will be thinking of elements of A as sequences ā = 〈a0, . . . , ak−1〉 of questions

by Alice, elements of B as sequences b̄ = 〈b0, . . . , bk−1〉 of responses by Bob, and the

relation ā R b̄ holds if b̄ is a list of correct answers to the questions ā.
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For example, the problem of coloring a graph can be formalized in this way, with

ā representing a sequence that codes the vertices and edge relations, b̄ representing

a sequence of colors for the vertices, and ā R b̄ holding if and only if the sequences

define a proper graph coloring.

Definition 3.1.2. Given a problem (A,B,R) the game G(A,B,R) is played as fol-

lows: Alice and Bob alternate playing elements of N:

Alice a0 a1 a2 · · ·

Bob b0 b1 b2 · · ·

Alice can stop the game at any time but Bob is required to respond to every one of

Alice’s plays. If the game stops after k rounds, then Bob wins if either 〈a0, . . . , ak−1〉 /∈

A or 〈a0, . . . , ak−1〉 R 〈b0, . . . , bk−1〉 holds; otherwise Alice wins. (So Bob wins if Alice

never stops the game.)

In terms of strategies, Alice should (but is not required to) halt the game as soon

as she reaches a point where 〈a0, . . . , ak−1〉 R 〈b0, . . . , bk−1〉 fails. Similarly, Bob should

(but is not required to) ensure that every partial play is such that 〈a0, . . . , ak−1〉 R

〈b0, . . . , bk−1〉 holds unless 〈a0, . . . , ak−1〉 /∈ A.

Thus, the existence of a winning strategy for either player in G(A,B,R) is the

same as the existence of a winning strategy for the same player in the game’s closed

kernel:

Definition 3.1.3. The closed kernel of a problem (A,B,R) is the problem (A,B,R′),

where 〈a0, . . . , ak−1〉 R′ 〈b0, . . . , bk−1〉 holds when 〈a0, . . . , ai〉 R 〈b0, . . . , bi〉 holds for

every i ≤ k − 1. We can also talk about the closed kernel of the game G(A,B,R),

which is the game G(A,B,R′).

Definition 3.1.4. Given a problem (A,B,R), the statement P(A,B,R) is
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∀X(α(X)→ ∃Y β(X, Y ))

where:

• α(X) holds if X is a finite set of the form

{(0, s0, a0), . . . , (k − 1, sk−1, ak−1)}

where s0 < · · · < sk−1 and 〈a0, . . . , ak−1〉 ∈ A, and

• β(X, Y ) holds if Y is a finite set of the form

{(0, t0, b0), . . . , (k − 1, tk−1, bk−1)}

where t0 < · · · < tk−1 and 〈a0, . . . , ak−1〉 R 〈b0, . . . , bk−1〉 holds.

We will imagine that (k, s, a) ∈ X means that Alice asks a at time s and (k, t, b) ∈

Y means that Bob responds b at time t. The first coordinate k indicates that there

are exactly k earlier requests in the conversation, ı.e., requests (k′, s′, a′) where k′ < k

and s′ < s.

There is no requirement that this is a conversation: s0 ≤ t0 < s1 ≤ · · · However,

neither Alice nor Bob has any advantage in deviating from that natural sequence of

events. Indeed, P(A,B,R) is equivalent to the stricter statement P′(A,B,R) where

it is additionally required that s0 = t0, . . . , sk−1 = tk−1.

Definition 3.1.5. SeqP(A,B,R) is the statement

∀X (∀nα(Xn) → ∃Y ∀nβ(Xn, Yn))
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where α(X) and β(X, Y ) are as in Definition 3.1.4. As usual, this notation means

that X = 〈Xn〉n∈N and Y = 〈Yn〉n∈N.

Notice that we can uniformly enumerate Alice’s sequences of requests Xn, but we

cannot computably determine how long these sequences are.

Definition 3.1.6. Gk(A,B,R) is the game G(A ∩ N<k, B ∩ N<k, R ∩ (N<k ⊗ N<k)).

Definition 3.1.7. Pk(A,B,R) is the statement P(A∩N<k, B∩N<k, R∩(N<k⊗N<k)).

Definition 3.1.8. SeqPk(A,B,R) is the statement SeqP(A∩N<k, B∩N<k, R∩(N<k⊗

N<k)).

Definition 3.1.9. A problem (A,B,R) is solvable if for every ā ∈ A there is a b̄ ∈ B

such that ā R b̄ holds. We say that (A,B,R) is k-solvable if every ā ∈ A with length

at most k there is a b̄ ∈ B such that ā R b̄ holds.

Definition 3.1.10. A problem (A,B,R) is on-line solvable if Bob has a winning

strategy in G(A,B,R). We say that (A,B,R) is on-line k-solvable if Bob has a

winning strategy in the restricted game Gk(A,B,R) where Alice is required to stop

after the kth round (or earlier).

Let us talk about what it means for the closed kernel (A,B,R′) to be solvable.

There are two equivalent interpretations that illustrate this idea. The first interpreta-

tion is that for every play ā of Alice’s, Bob has a winning play b̄ such that every initial

segment of that play is also winning. This is different from Bob having a winning

strategy in the game, since Alice makes her full play immediately, with no input from

Bob. Once again, the graph coloring problem is a useful example. If Alice presents a

forest for Bob to 2-color, he can certainly color it such that all initial segments of his

2-coloring are valid, even though Bob does not have a winning strategy in the game,

as we saw in Proposition 1.2.5.
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The second interpretation is that Bob has a winning strategy in a game that

creates an “on-line tree.” Every time Alice plays, Bob adds one level to his tree of

valid plays. A node of the tree is a dead end if Alice’s next play makes it impossible

for Bob to extend that node with any play. Bob wins if, once Alice has played all k

of her plays, Bob has one or more branches of length k on his tree; that is, one or

more winning plays. This winning play satisfies the first interpretation as well.

This second interpretation helps us visualize three cases of Bob’s ability to solve a

problem. Case 1 is that Bob has a uniform winning strategy; Case 2 is that Bob has

a tree of winning plays as described above; Case 3 is that Bob has neither luxury, just

an eventually winning play that will lose at some earlier round, for each corresponding

play of Alice’s. These three cases will correspond to the provability of the sequential

problem in RCA0, WKL0, and ACA0, respectively.

Definition 3.1.11. The problem (A,B,R) is semi-bounded if Bob’s valid responses

are bounded by a function of Alice’s previous plays. More precisely, there is a

function f such that if 〈a0, . . . , ak−1〉 R 〈b0, . . . , bk−1〉 holds then b0 < f〈a0〉, b1 <

f〈a0, a1〉, . . . , bk−1 < f〈a0, a1, . . . , ak−1〉.

Note that this is a requirement on R and not on B.

Definition 3.1.12. The problem (A,B,R) is bounded if, in addition to being semi-

bounded, there is a function g such that for each ā ∈ A and for each i we have

ai < g(i). In other words, Alice’s valid plays are bounded by g.

Note that this is a requirement on A.
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3.2 Separating RCA0 from WKL0: On-Line Solvabil-

ity

Proposition 3.2.1 (RCA0). Let (A,B,R) be a problem which is not k-solvable. Then

SeqPk(A,B,R) fails.

Proof. Let ā ∈ A ∩ N<k be a request such that there is no corresponding response

b̄ ∈ B ∩ N<k with ā R b̄. Consider the infinite constant sequence 〈Xā, Xā, . . .〉,

where Xā encodes the play ā. Then clearly there cannot exist Y = 〈Yn〉n∈N such that

β(Xn, Yn) holds for even a single n. So SeqPk(A,B,R) fails.

Theorem 3.2.2 (RCA0). Let (A,B,R) be a problem which is on-line solvable. Then

SeqP(A,B,R) holds.

Proof. By assumption, Bob has a winning strategy. This gives a clear uniformly com-

putable procedure to find the appropriate b̄ which is winning against a given play ā.

We can then easily produce a sequence 〈Yn〉n∈N of plays for Bob when given a sequence

〈Xn〉n∈N of plays for Alice using this procedure, and we will have ∀nβ(Xn, Yn).

Definition 3.2.3. Let (A,B,R) be a bounded problem. Define the maximum play

in the game Gk(A,B,R), denoted Mk(A,B,R), as one more than the largest possible

play by either Alice or Bob in the game Gk(A,B,R).

Mk(A,B,R) is the maximum value of g(i) and f〈a0, . . . , ai〉 as i ranges from 0

to k and such that for each j we have aj < g(j).

Lemma 3.2.4 (RCA0). Let k ≥ 1 and let (A,B,R) be a bounded problem. Then

Gk(A,B,R) is determined.
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Proof. Let f, g be the functions witnessing the boundedness of the problem. Then in

fact the full tree of Bob’s strategies is bounded and computable, since both players’

plays are bounded by Mk(A,B,R).

So we can perform a search for a winning strategy for Bob through the whole

tree, and we will have an answer in finite time. If we do not come up with a winning

strategy, then Alice has a winning strategy. Namely, play a0 such that Bob does not

have a winning strategy above a0, and in general play ai such that Bob does not have

a winning strategy above ai. We can computably find this sequence ā of plays, and ā

will hence be a winning play for Alice.

The theorem below generalizes the argument in Schmerl [33] for the graph coloring

problem described in Section 2.4.

Theorem 3.2.5 (RCA0). Let k ∈ N. Let (A,B,R) be a bounded problem which

is not on-line k-solvable. Let M = Mk(A,B,R). If Predictk(M + 1) holds, then

SeqPk(A,B,R) fails.

Proof. Suppose that both Predictk(M + 1) and SeqPk(A,B,R) hold. Let W be an

oracle such that ∆W
0 , . . . ,∆

W
k−1 witness Predictk(M + 1). We know by Lemma 3.2.4

that Alice has a winning strategy in Gk(A,B,R).

We will construct a sequence of instances of the finite game Gk(A,B,R): Alice

will play ai according to her winning strategy against Bob’s playing the predictor

sequence 〈∆W
j 〉j<i in every round j < i, as long as those potential plays are valid.

In game n, Alice’s plays are given by some Xn, and so by SeqPk(A,B,R), there is

a sequence Y = 〈Yn〉n∈N such that Yn gives plays by Bob that win against Alice’s

plays in game n. Hence Alice’s plays in game n win against the predictor sequence,

since she used her winning strategy, but they lose against Yn. However, the predictor

54



sequence correctly predicts Yn for some n, which is a contradiction.

Define 〈Xn〉n∈N as follows: First let (0, 0, a0) ∈ Xn, where a0 is the initial play in

Alice’s winning strategy. For 0 < i < k, assume that s is the first stage such that

∆W
i−1(n) ↓ [s]. If for all j, 0 < j ≤ i, by letting Bob play

b̄ = 〈∆W
0 (n), ∆W

1 (n), . . . , ∆W
j−1(n)〉 against ā = 〈a0, a1, . . . , aj−1〉, where Alice plays

aj using her winning strategy at every step, we have (ā � j) R b̄ holding, then let ai

be Alice’s next play in her winning strategy and add (i, s, ai) to Xn. If there is any

j ≤ i such that the relation fails, we do not add any element to Xn. If ∆W
i−1(n) ↑, we

do not add any element to Xn.

Given this sequence 〈Xn〉n∈N of problem instances, let 〈Yn〉n∈N be the sequence of

solutions guaranteed by SeqPk(A,B,R). Define 〈fj〉j<k according to two cases:

Case 1: fj(n) = bj, if (j, tj, bj) ∈ Yn.

Case 2: fj(n) = M if there was j′ ≤ j such that (ā � j′) R 〈∆W
0 (n), . . . ,∆W

j′−1(n)〉

fails, and we also have ∆W
j−1(n) ↓.

Case 1 and Case 2 are mutually exclusive. β(Xn, Yn) can only hold if Xn and

Yn have the same number of elements, and we would not add (j, sj, aj) to Xn if the

condition of Case 2 held for some j′ ≤ j.

Note that dom fj = Uj = dom ∆W
j−1, since fj(n) will halt until the first time

∆W
j−1(n) ↑. Also recall that M is not a valid play for Alice or Bob, being one more

that the maximum possible value in the game Gk(A,B,R).

By Predictk(M + 1), there is n such that (∀j < k) fj(n) = ∆W
j (n). We have two

cases.

Case 1’: fj(n) = M for some j < k. This means that there is a least j′ ≤ j

such that (ā � j′) R 〈∆W
0 (n), . . . ,∆W

j′−1(n)〉 fails. We also have ∆W
i (n) = fi(n) for

0 ≤ i ≤ j′ − 1. By the minimality of j′, we are in Case 1 above for fi, 0 ≤ i ≤ j′ − 1;

in other words, Bob plays j′ times and b̄ = 〈b0, . . . , bj′−1〉 = 〈f0(n), . . . , fj′−1(n)〉 =

55



〈∆W
0 (n), . . . ,∆W

j′−1(n)〉, and therefore (ā � j′) R b̄ fails. But in this case (ā � j′) is

Alice’s entire play in Xn, and so β(Xn, Yn) fails, contradicting that β(Xn, Yn) holds.

Case 2’: fj(n) < M for all j < k, which means that there are a full k elements in

Yn. This means that Bob plays k times, and b̄ = 〈∆W
0 (n), . . . ,∆W

k−1(n)〉 is such that

(ā �k) R b̄ holds; that is, ā R b̄ holds. However, this means that b̄ is a winning play

against Alice’s winning strategy, which is a contradiction.

Corollary 3.2.6 (RCA0). Let k < ω, and let (A,B,R) be a bounded problem which

is not on-line k-solvable. Also assume that M < ω, where M = Mk(A,B,R). Then

SeqPk(A,B,R) implies WKL0.

Proof. Corollary 2.3.13 and Theorem 3.2.5.

3.2.1 Determinacy of the relevant games

In proving Theorem 3.2.5, we needed the fact that the finite game Gk(A,B,R) is

determined when (A,B,R) is bounded. In this subsection we present some further

determinacy results about the related games.

Lemma 3.2.7 (WKL0). Let (A,B,R) be a bounded problem. Then if Bob has a

winning strategy in every game Gk(A,B,R) for k ∈ N, then Bob has a winning

strategy in G(A,B,R).

Proof. We will define a tree T of winning strategies for Bob. Each node of T on level

j will encode Bob’s response to every possible sequence of plays by Alice. Let f, g

witness the boundedness of Bob’s and Alice’s plays as presented in Definitions 3.1.11

and 3.1.12.
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If σ ∈ T , then σ(j) is a sequence 〈bj,0, bj,1, . . . , bj,N−1〉, such that N is the number

of possible sequences of Alice’s plays in rounds 0 through j, and bj,i ∈ B is Bob’s

valid response (meaning the relation R holds) to Alice’s ith sequence of plays in some

canonical ordering. This is, of course, assuming that when Alice played the first j′ < j

plays in her ith sequence, Bob played the corresponding bj′,i′ encoded in σ(j′), which

is σ(j)’s predecessor on level j′ of the tree.

If for even one i, 0 ≤ i < N , Bob does not have a winning response, then the tree

has a dead end, and σ(j) is undefined.

By assumption, Bob has a winning strategy in Gj(A,B,R) for every j. This

means that T is infinite, and an infinite branch of T would clearly encode a full

winning strategy for Bob in G(A,B,R).

The tree is also bounded. Suppose that σ(j) is a sequence of length N and its

code has value M . I claim that in the recursive function h(j, r) defined below, h(j, 0)

is a bound for N (number of possible plays for Alice in the first j steps) and h(j, 1)

is a bound for M (coded value of the sequence of possible responses by Bob in round

j):

h(0, 0) = g(0)

h(0, 1) = f(g(0))h(0,0)

h(1, 0) = h(0, 0) · g(1)

h(1, 1) = f(g(0), g(1))h(1,0)

· · ·

h(j, 0) = h(j − 1, 0) · g(j)

h(j, 1) = f(g(0), g(1), . . . , g(j))h(j,0)

WKL0 shows that this tree has an infinite path, and this path will encode a winning

strategy for Bob in G(A,B,R).
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Theorem 3.2.8 (WKL0). Let (A,B,R) be a bounded problem. Then G(A,B,R) is

determined.

Proof. If Bob does not have a winning strategy in G(A,B,R), then Lemma 3.2.7

implies that there exists k ∈ N such that Bob does not have a winning strategy

in Gk(A,B,R). Then Lemma 3.2.4 implies that Alice has a winning strategy in

Gk(A,B,R) and hence in G(A,B,R).

Lemma 3.2.9 (WKL0). Let (A,B,R) be a semi-bounded problem. Then Alice has a

winning strategy in G(A,B,R) if and only if there exist c, k ∈ N such that Alice has

a winning strategy in Gk(A ∩ c<k, B,R), where all of Alice’s plays are required to be

in the set {0, . . . , c− 1}.

Proof. Suppose that Alice has a winning strategy in G(A,B,R).

I claim that plays in this winning strategy have a maximum possible length k.

Define a tree T of plays of the game in which Alice always uses her winning strategy.

If σ ∈ T , then σ(2j) encodes a play by Alice using her winning strategy, given earlier

plays σ(0), . . . , σ(2j − 1) by both players. (This includes the root σ(0), which is

an initial play in Alice’s winning strategy). σ(2j + 1) encodes any play by Bob

given earlier plays σ(0), . . . , σ(2j) by both players. In this tree, a node σ(2j) is

a dead end if Bob does not have a valid response σ(2j + 1) to the earlier plays

〈σ(0), σ(1), . . . , σ(2j)〉.

Now the problem is only semi-bounded, so we have a bound f for Bob’s plays

as presented in Definition 3.1.11, but no bound for Alice’s plays. However, I claim

that for σ ∈ T , σ(j) is bounded by h(j), where h(j) is the recursive function defined

below:
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h(0) = Alice’s initial play in her winning strategy

h(1) = f(h(0))

h(2) = maximum response in Alice’s winning strategy to

Bob playing 0, . . . , h(1)

· · ·

h(2j + 1) = max
{
f(a0, a1, . . . , aj) : 0 ≤ ai ≤ h(2i)

}
h(2j + 2) = maximum response in Alice’s winning strategy to

Bob playing 0, . . . , h(2i+ 1) in the ith round, 0 ≤ i ≤ j

So the levels of T are bounded. However, in this case T is not infinite, for if we

had an infinite branch of T , then Bob has an infinite sequence of valid responses,

and therefore Bob can win the game, contradicting that Alice has a winning strategy.

Therefore, T has a maximum possible level k.

Therefore, there are only a finite number of possible plays by Bob if we assume

Alice repeatedly uses her strategy. In fact, we can use h(j) above to put a bound on

values of Alice’s plays just as we can in a fully bounded problem: aj < h(2j). If we

choose c = h(2k), then Alice has a winning strategy in Gk(A ∩ c<k, B,R) as desired.

Theorem 3.2.10 (WKL0). Let (A,B,R) be a semi-bounded problem. Then G(A,B,R)

is determined.

Proof. If Alice does not have a winning strategy, then Lemma 3.2.9 implies that

for all c, k ∈ N, Alice does not have a winning strategy in Gk(A ∩ c<k, B,R). But

(A ∩ c<k, B ∩ N<k, R ∩ (N<k ⊗ N<k)) is a bounded problem, and so Lemma 3.2.4

implies that Bob does have a winning strategy in Gk(A ∩ c<k, B,R) for every c, k.
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We can essentially follow the proof of Lemma 3.2.7, gluing Bob’s finite strategies

together to form a tree, to show that he has a winning strategy in G(A,B,R). To

show that the tree is infinite, just note that for every k ∈ N there is a winning play

for Bob in Gk(A,B,R), since if c = g(k) is as we constructed in Lemma 3.2.9, then

Bob’s winning strategy in Gk(A ∩ c<k, B,R) is necessarily also a winning strategy in

Gk(A,B,R).

Remark 3.2.11. It is not the case that if (A,B,R) is a solvable problem, then ACA0

proves that G(A,B,R) is determined. This statement requires ATR0.

3.3 Separating WKL0 from ACA0: Solvability of the

closed kernel

The characteristic that separates the sequential problems provable in WKL0 from

those that require ACA0 is the solvability of the closed kernel.

First let us note that ACA0 suffices to prove SeqP(A,B,R) for every solvable

problem (A,B,R). Recall that Dn stands for the nth finite set in a canonical ordering.

Proposition 3.3.1 (ACA0). Let (A,B,R) be a solvable problem. Then SeqP(A,B,R)

holds.

Proof. Let 〈Xn〉n∈N be a sequence such that ∀nα(Xn). Since each Xn encodes a series

of requests ā for Alice in a solvable problem, we know that for each n there exists b̄

such that ā R b̄, so we can encode a Yn such that β(Xn, Yn).

We can use ACA0 to define a function which gives an upper bound b(n) for each

finite set Xn, and then using the upper bounds, we can find a function f that codes

each finite set Xn as Df(n). (Df(n) can be found by considering all finite subsets
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of {0, . . . , b(n)}.) Then we can use minimization to find the least en such that

β(Df(n), Den) holds. Define Y := 〈Yn〉n∈N = 〈Den〉n∈N and we are done.

3.3.1 Cases where WKL0 is sufficient

We show in the following theorem that for a semi-bounded problem, if the closed

kernel is solvable, then WKL0 is sufficient to prove the sequential problem.

Theorem 3.3.2 (WKL0). Let (A,B,R) be a semi-bounded problem with closed kernel

(A,B,R′). If (A,B,R′) is solvable, then SeqP(A,B,R) holds.

Proof. Let 〈Xn〉n∈N be a sequence such that ∀nα(Xn).

We will enumerate triples 〈n, s, a〉 according to a fixed bijective pairing function

p : N→ N× N× N, such that if p(m) = (n, 0, 0) and p(m′) = (n′, 0, 0) with m < m′,

then n < n′.

Define a tree T as follows: σ ∈ T if and only if for all 〈n, s, a〉 < lh(σ):

• If (∃k ≤ s) (k, s, a) ∈ Xn, then

〈a0, a1, . . . , ak〉 R 〈σ(n, s0, a0), σ(n, s1, a1), . . . , σ(n, sk, ak)〉

where (k, sk, ak) = (k, s, a) and (0, s0, a0), (1, s1, a1), . . . , (k, sk−1, ak) is the

complete list of elements of Xn with first coordinate k ≤ s.

• If (∀k ≤ s)(k, s, a) /∈ Xn, then σ(n, s, a) = 0.

This tree T is computable from the given sequence 〈Xn〉n∈N. Even though there

is no bound on the ai’s, since we know that there are exactly k triples (i, si, ai) ∈ Xn

with i < k and si < s, we can do a computable search for the required ai’s.
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We will now show that the tree is also infinite. Let n ∈ N; we will show that

T has a node of length 〈n, 0, 0〉. Consider all requests less than Xn: the requests

X0, X1, . . . , Xn−1. Some of these requests may have been fully enumerated, and

others may have only been partially enumerated, before 〈n, 0, 0〉. That is, for n′ < n,

the set {(k, s, a) : 〈n′, s, a〉 < 〈n, 0, 0〉} may contain every (k, s, a) ∈ Xn′ or it may

not. However, since the closed kernel is solvable, there exists a solution b̄ to the full

ā encoded by Xn′ (ı.e., ā R b̄), such that every initial segment of b̄ is also a solution

to the corresponding initial seqment of ā (ı.e., (ā � j) R (b̄ � j) for every j). For this

reason, T indeed has a node of length 〈n, 0, 0〉, a node that encodes a valid partial or

total solution to all plays Xn′ , n
′ < n.

Finally, T is a bounded tree. By the definition above, if σ ∈ T , σ(n, s, a) is

either 0 or is of the form br such that 〈a0, . . . , ar〉 R 〈b0, . . . , br〉 for appropriate

a0, . . . , ar, b0, . . . , br−1. Since our problem is semi-bounded, we have

br < f〈a0, a1, . . . , ar〉 for some function f in our model, and the ai’s come from our

(given) sequence 〈Xn〉n∈N. So σ(n, s, a) is bounded by a function in our model, and

T is a bounded tree.

By WKL0, T has an infinite branch h ∈ [T ]. Given Xn, we can define Yn by:

(k, s, b) ∈ Yn if and only if there exists a with (k, s, a) ∈ Xn and h(n, s, a) = b. It is

clear that β(Xn, Yn) holds. So 〈Yn〉n∈N is a solution to SeqP(A,B,R).

3.3.2 A special case where ACA0 is necessary

Conversely, it is precisely the problems without solvable closed kernels which require

ACA0 to prove the sequential problem. Proving this will take a bit more work. There

is a relatively easy proof in the following special case:
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Proposition 3.3.3 (RCA0). Let k ∈ N. Suppose that P = (A,B,R) is a solvable

problem whose closed kernel (A,B,R′) is not k-solvable. Suppose, in addition, that

there is a request ā of length k and a particular j < k such that for each b̄ with ā R b̄,

we have (ā�j) R (b̄�j) fails. Then if SeqP(A,B,R) holds, ACA0 holds.

Note that this includes all cases where each request ā has a unique solution b̄.

Proof. Let ā = 〈a0, . . . , ak−1〉 and j < k be as stated above. Let f : N → N be an

arbitrary injection; we will show that ran f exists.

Define a sequence 〈Xn〉n∈N as follows: (0, 0, a0), (1, 1, a1), . . . , (j − 1, j − 1, aj−1)

are always in Xn. If f(s) = n, then (j, s+ j, aj), . . . , (k − 1, s+ k − 1, ak−1) are also

in Xn. Note that 〈Xn〉n∈N is a computable sequence and that α(Xn) holds for all n.

By SeqPk(A,B,R), there exists 〈Yn〉n∈N such that ∀nβ(Xn, Yn) holds. Given n ∈

N, check whether (ā � j) R (b̄ � j) holds. (Here b̄ = 〈b0, . . . , br〉 is such that Yn =

{(0, t0, b0), . . . , (r, tr, br)} for some r, j − 1 ≤ r ≤ k − 1.) If this relation does hold,

then by assumption b̄�j cannot extend to a full solution b̄ with ā R b̄, and so n /∈ ran f .

On the other hand, if the relation does not hold, then since Yn is a winning response

to Xn, b̄�j must extend to a full solution b̄ with ā R b̄, and so n ∈ ran f .

3.3.3 Good Tuples and Good-for-Uniform Tuples

Not all applications satisfy the requirements of Proposition 3.3.3; it is possible that

each request ā has multiple winning responses b̄1, b̄2 where initial segments of different

lengths fail to belong to R. For examples of this, see the non-optimal pigeonhole

principle (Theorem 4.1.2) and the task scheduling problem (Theorem 4.4.10) in the

next chapter. Analyzing problems of this type is the goal of this subsection, and

it requires two new concepts: the “good tuple” introduced by Schmerl, and our
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modification, the “good-for-uniform tuple.”

The following Definition 3.3.5 is a slight modification of the one Schmerl uses in

[34]. We will work in a model N = (N,X) of RCA0.

Definition 3.3.4. We say that X ⊆ N is enumerable if either it is finite or there is

an injective function in X, eX : N→ N, which enumerates X:

x ∈ X ↔ ∃n (eX(n) = x)

Recall that N � ACA0 if and only if every enumerable set is in X.

Definition 3.3.5. Let n ≥ 2. The n-tuple 〈X0, X1, . . . , Xn−1〉 is good if X0 ⊇ X1 ⊇

X2 ⊇ · · · ⊇ Xn−1, each Xi is enumerable, and whenever Y1, Y2, . . . , Yn−1 are enu-

merable sets such that, for 1 ≤ i ≤ n − 1, Yi ⊆ Xi \ (Y1 ∪ Y2 ∪ · · · ∪ Yi−1) and

Xi−1 \ (Y1 ∪ Y2 ∪ · · · ∪ Yi) is enumerable, then Xn−1 \ (Y1 ∪ Y2 ∪ · · · ∪ Yn−1) 6= ∅.

Schmerl’s definition of “good” requires only (n − 2) of the Yi’s in the condition;

in our definition both Xi and Yi range through i = n− 1. In our definition, there can

be good 2-tuples; in Schmerl’s defnition, the smallest size is a 3-tuple.

As Schmerl notes, if 〈X0, X1, . . . , Xn−1〉 is a good tuple, then X0 cannot be finite

(otherwise just take Y1 = X1, Yi = ∅ for i > 1), meaning that X0 is the range of an

injective function eX0 : N→ N, and it is easy to check that

〈e−1
X0

(X0), e−1
X0

(X1), . . . , e−1
X0

(Xn−1)〉 is also good. So if we are assuming the existence

of a good k-tuple, we are free to choose X0 = N.

Lemma 3.3.6 (Schmerl [34], RCA0). Let 2 ≤ n < ω. Then N � ACA0 if and only if

there are no good n-tuples.

Extending Schmerl’s argument to nonstandard n appears to require Π1
1-induction,

the culprit being the clause “whenever Y1, . . . , Yn−1 are enumerable” in the hypothesis.
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We introduce a slightly weaker concept called a “good-for-uniform” tuple, and this

will allow us to prove an analogue of Lemma 3.3.6 with much milder induction: our

proof will hold in RCA0 for standard n < ω and in RCA0 + IΣ0
2 for nonstandard n ∈ N.

Definition 3.3.7. Let n ≥ 2. The n-tuple 〈X0, X1, . . . , Xn−1〉 is good-for-uniform if

X0 ⊇ X1 ⊇ X2 ⊇ · · · ⊇ Xn−1, each Xi is enumerable, and whenever 〈f0, f1, . . . , fn−2〉

is a sequence of partial Σ0
1-functions fi : Xi → {0, 1, . . . , i + 1} such that f−1

i+1{j} =

f−1
i {j} ∩Xi+1 for all j ≤ i < n − 2 and f−1

i {i} ⊆ Xi+1 for i < n − 1, then we have

Xn−1 ∩ f−1
n−2{n− 1} 6= ∅.

When we say that fi is a partial Σ0
1-function fi : Xi → {0, . . . , i + 1}, we mean

that the domain is all of Xi, so it is not “partial” on Xi. We just emphasize that

“fi(x) = j” is a Σ0
1-statement, since Xi may not be a set in our model N . Also,

note that our sequence 〈f0, f1, . . . , fn−2〉 can be viewed as a single Σ0
1-function f :

N×X0 → {0, . . . , n− 1}.

Proposition 3.3.8. If 〈X0, X1, . . . , Xn−1〉 is good, then it is good-for-uniform.

Proof. Let 〈f0, . . . , fn−2〉 be a sequence of functions with the properties in Definition

3.3.7.

If we define Y1, . . . , Yn−1 and Z0, . . . , Zn−2 as follows:

Y1 = f−1
0 {0} Z0 = f−1

0 {1}

Y2 = f−1
1 {1} Z1 = f−1

1 {2}

. . .

Yn−1 = f−1
n−2{n− 2} Zn−2 = f−1

n−2{n− 1}

then they satisfy the conditions in the definition of a good n-tuple: Y1, Y2, . . . , Yn−1
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are enumerable sets, Yi ⊆ Xi, Zi−1 = Xi−1 \ (Y1 ∪ Y2 ∪ · · · ∪ Yi) is also enumerable,

and Yi ∩ (Y1 ∪ Y2 ∪ · · · ∪ Yi−1) = ∅.

Since our tuple is good, we have Xn−1 \ (Y1∪Y2∪· · ·∪Yn−1) 6= ∅, or equivalently,

Xn−1 ∩ f−1
n−2{n− 1} 6= ∅.

A proof of the following lemma, for good tuples, is presented in Schmerl [34].

However, there appears to be a gap in this proof. The author would like to thank

Groszek and Slaman [15] for outlining a correction to Schmerl’s proof. The following

proof incorporates their corrections and generalizes to good-for-uniform tuples.

Lemma 3.3.9 (RCA0 + IΣ0
2). Fix an enumerable set A and m ≥ 2. We will use a

pairing function to identify Nm with N. For i < m, let Xi = Ai × Nm−1−i (so, in

particular, X0 = Nm−1 and Xm−1 = Am−1). If 〈X0, X1, . . . , Xm−1〉 is not a good-for-

uniform m-tuple, then N \A is enumerable.

Proof. Suppose that f = f(i, n) is the partial function that witnesses that

〈X0, X1, . . . , Xm−1〉 is not good-for-uniform, so that:

• f(i, n) = fi(n), 0 ≤ i ≤ m− 2

• fi : Xi → {0, . . . , i+ 1}

• fi(x) = j < i → fi−1(x) = j

• fi(x) = i → x ∈ Xi+1

• ran(fm−2 � Xm−1) ⊆ {0, . . . ,m− 2}

Let j < m − 2. Define w̄ =
〈
w(m−2)−(j−1), w(m−2)−(j−2), . . . , wm−2

〉
to be a bad

sequence if each wi is in N \A and for every sequence v̄ =
〈
v0, . . . , v(m−2)−j

〉
either

66



v̄ /∈ A(m−1)−j or

f(m−2)−j(v0, . . . , v(m−2)−j, w(m−2)−(j−1), w(m−2)−(j−2), . . . , wm−2) 6= (m− 1)− j.

Since A is enumerable, the set of all bad sequences is a Π0
1 set. Clearly the empty

sequence is a bad sequence.

Case 1: There exists a bad sequence 〈w1, w2, . . . , wm−2〉 of length m− 2.

Let v ∈ N. If v ∈ A, then f0(v, w1, w2, . . . , wm−2) 6= 1, meaning

f0(v, w1, w2, . . . , vm−2) = 0.

On the other hand, if v /∈ A, then (v, w1, w2, . . . , wm−2) /∈ dom f1. This means that

f0(x) 6= 0, implying that

f0(v, w1, w2, . . . , vm−2) = 1.

Therefore, since dom f0 = N, A is computable; hence N \A is enumerable.

Case 2: There are no bad sequences of length m− 2.

Let j < m− 2 be the greatest j such that there exists a bad sequence of length j.

Note that the statement Θ(j) := “There exists j′ ≥ j and a bad sequence w̄ of length

j′” is a Σ0
2 statement, and by IΣ0

2, since ∀jΘ(j) fails and since Θ(0) holds, there exists

j0 such that Θ(j0) ∧ ¬Θ(j0 + 1) holds.

We claim that N \A is enumerable; namely, v ∈ N \A if and only if

[
∃
〈
a0, . . . , a(m−3)−j

〉
∈ A(m−2)−j ]

f(m−2)−j(a0, . . . , a(m−3)−j, v, w(m−2)−(j−1), . . . , wm−2) = (m−1)−j
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For if v ∈ A, then since w̄ is bad, for any ā ∈ A(m−2)−j, we have f(m−2)−j(ā, v, w̄) 6=

(m − 1) − j. On the other hand, if v ∈ N \A, then if for all ā ∈ A(m−2)−j we had

f(m−2)−j(ā, v, w̄) 6= (m− 1)− j, then (v, w̄) would be a bad sequence of length j + 1,

a contradiction.

Corollary 3.3.10 (RCA0). If m < ω, then Lemma 3.3.9 can be proven in RCA0.

That is, suppose that m < ω, A is enumerable, and Xi = Ai × Nm−1−i for 0 ≤

i ≤ m − 1. If 〈X0, X1, . . . , Xm−1〉 is not a good-for-uniform m-tuple, then N \A is

enumerable.

Proof. Observe that in the proof of Lemma 3.3.9, we divided our argument into 2

cases and applied Σ0
2-induction in the second case. However, if m < ω, then we can

divide the argument into exactly m− 1 cases:

Case 1: There exists a bad sequence of length m− 2.

Case 2: There exists a bad sequence of length m− 3 but none of higher length.

· · ·

Case i: There exists a bad sequence of length (m − 1) − i but none of higher

length.

· · ·

Case m− 1: The only bad sequence is the empty sequence of length 0.

Or, if you like, since Θ(0) is true, we know that the following sentence is true:

m−2∨
i=0

Θ(i) ∧ [(∀i′, i < i′ < m− 2)¬Θ(i′)]

In each case, we can check that N \A is enumerable using the exact method presented

in the proof of the previous lemma.
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Theorem 3.3.11 (RCA0 + IΣ0
2). Let m ∈ N. Then ACA0 holds if and only if there

are no good-for-uniform m-tuples.

Proof. Let N = (N,X) be a model of RCA0. Suppose that N � ACA0 and sup-

pose that X0 ⊇ X1 ⊇ · · · ⊇ Xm−1, with each Xi enumerable. To show that the

m-tuple is not good-for-uniform, define the sequence 〈f0, . . . , fm−2〉 by fi(X1) = 0

for all i; f0(X0\X1) = 1. Since X1 is arithmetical, ACA0 proves the existence of the

tuple 〈f0, . . . , fm−2〉. Then 〈X0, X1, . . . , Xm−1〉 satisfies the hypotheses of a good-for-

uniform m-tuple but not its conclusion, since Xm−1 ⊆ X1 and thus fm−2(Xm−1) = 0.

Now assume that N � ¬ACA0. Fix an enumerable set A such that A /∈ X, and

let 〈X0, X1, . . . , Xm−1〉 be defined as in Lemma 3.3.9, so that Xi = Ai × Nm−1−i for

i < m. Since N \A is not enumerable, then the lemma shows that 〈X0, X1, . . . , Xm−1〉

is a good-for-uniform tuple.

Corollary 3.3.12 (RCA0). Let m < ω. Then ACA0 holds if and only if there are no

good-for-uniform m-tuples. In other words, for standard m < ω, RCA0 is sufficient

to prove Theorem 3.3.11.

Proof. This follows from the proof of Theorem 3.3.11, but with Lemma 3.3.9 replaced

with Corollary 3.3.10.

3.3.4 The general case where ACA0 is necessary

Theorem 3.3.13 (Dorais-Harris, RCA0). Let k ∈ N. Suppose we are given a problem

(A,B,R) and its closed kernel (A,B,R′). If (A,B,R′) is not k-solvable and there is

a good-for-uniform k-tuple, then SeqPk(A,B,R) fails.
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Proof. Assume that (A,B,R) is k-solvable, but (A,B,R′) is not k-solvable. (If

(A,B,R) is not k-solvable, then SeqPk(A,B,R) fails automatically.) Let 〈a0, . . . , ak−1〉

be a request from Alice such that for any winning response 〈b0, . . . , bk−1〉 (meaning

that ā R b̄), there exists j < k such that 〈a0, . . . , aj−1〉 R 〈b0, . . . , bj−1〉 does not hold.

Also let 〈X0, . . . , Xk−1〉 be a good-for-uniform k-tuple with X0 = N.

Now also assume that SeqPk(A,B,R) holds. Define 〈An〉n∈N as follows: (i, i+s0 +

· · · + si, ai) ∈ An if and only if eXi′
(si′) = n for all i′ ≤ i, and ai is in Alice’s above-

mentioned request. So the sequence of requests in An will be 〈a0, . . . , ai〉 precisely if

n ∈ Xi\Xi+1. Note that 〈An〉n∈N is computable and α(An) holds for all n.

By SeqPk(A,B,R), there exists 〈Bn〉n∈N such that ∀nβ(An, Bn) holds.

Define fi : Xi → {0, . . . , i + 1} as follows: For j ≤ i, fi(y) = j if 〈a0, . . . , aj〉 R

〈b0, . . . , bj〉 fails but 〈a0, . . . aj′〉 R 〈b0, . . . bj′〉 holds for all j′ < j. fi(y) = i + 1 if

〈a0, . . . , ai′〉 R 〈b0, . . . , bi′〉 holds for all i′ ≤ i. (The bj’s here are such that By =

{(0, t0, b0), . . . , (r, tr, br)}, and the aj’s are from Alice’s above-mentioned request.)

First note that dom fi = Xi for all i, since all possible sequences By of length

≥ i+ 1 are assigned some value fi(y) depending on their properties.

If j ≤ i, then f−1
i+1{j} = {y : y ∈ Xi+1 ∧ 〈a0, . . . , aj〉 R 〈b0, . . . , bj〉 fails for the

first time at j} = f−1
i {j} ∩Xi+1.

Finally, f−1
i {i} ⊆ Xi+1, for if fi(y) = i, then 〈a0, . . . , ai〉 R 〈b0, . . . , bi〉 fails for the

first time at i. If it happened that y /∈ Xi+1, then 〈b0, . . . , bi〉 would be a winning

response to 〈a0, . . . , ai〉, which it clearly is not. So y ∈ Xi+1.

By the hypothesis that 〈X0, . . . Xk−1〉 is a good-for-uniform k-tuple, we know that

there exists an element y ∈ Xk−1∩f−1
k−2{k−1}. So inBy, 〈a0, . . . , ak−2〉 R 〈b0, . . . , bk−2〉

holds and in fact 〈a0, . . . , aj〉 R 〈b0 . . . , bj〉 holds for all j ≤ k − 1, contradicting that

(A,B,R′) is not k-solvable.
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Corollary 3.3.14 (RCA0 + IΣ0
2).

(1) Let k ∈ N. If (A,B,R′) is not k-solvable and SeqPk(A,B,R) holds, then ACA0

holds.

(2) If k < ω is standard, then (1) can be proven in RCA0.

Proof. This follows from Theorem 3.3.11, Corollary 3.3.12, and Theorem 3.3.13.

3.3.5 IΣ0
2 and nonstandard-length good tuples

In the previous subsection, we showed that IΣ0
2 suffices to prove that the nonexistence

of a good-for-uniform m-tuple implies ACA0. At the moment we do not know whether

IΣ0
2 is also necessary to prove this. However, in this section we show that IΣ0

2 is

necessary to prove the corresponding statement for good tuples: Schmerl’s original,

non-uniform concept that we introduced in Definition 3.3.5.

Schmerl proved (Lemma 3.3.6) that ACA0 holds if and only if there are no good

m-tuples for standard m; however, extending his proof to nonstandard m appears

to require Π1
1-induction, since we require each Zi−1 = Xi−1 \ (Y1 ∪ · · · ∪ Yi) to be

an enumerable set. In our definition of good-for-uniform tuples, our functions fi

enumerate the Yi’s and Zi−1’s uniformly, so this accounts for the difference in the

complexity. We now show that when our tuple has nonstandard length, if we are in

a model of BΣ0
2, the existence of a good tuple is equivalent to IΣ0

2 + ¬ACA0.

Definition 3.3.15. A cut in a model N of PA− is a set I ⊆ N such that ∀n∀m[(n ∈

I ∧m < n) → m ∈ I] and ∀n(n ∈ I → n + 1 ∈ I). A cut I ⊆ N is called proper if

I 6= ∅ and I 6= N.
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If φ is a formula for which the induction axiom fails in N, then ψ(n) = (∀m <

n)φ(m) defines a proper cut in N . Similarly, if φ defines a proper cut in N, then the

induction axiom fails for φ.

We reproduce the proof of the following result of Friedman, which is often a useful

tool when proving theorems in subsystems with limited induction.

Lemma 3.3.16 (Friedman [8]). If N � BΣ0
2 + ¬IΣ0

2, then there are a proper Σ0
2 cut

I ⊆ N and an increasing cofinal c : I → N whose graph is ∆0
2.

Proof. Let φ(n) = ∃mθ(n,m) be a Σ0
2 formula witnessing the failure of IΣ0

2, so that

φ(0) ∧ ∀n(φ(n)→ φ(n+ 1)) ∧ ∃n¬φ(n)

holds. Let I = {n : (∀k < n)φ(k)}. I is clearly a proper cut. We have n ∈ I ↔

(∀k < n)∃mθ(k,m), and so by BΣ0
2, ∃b(∀k < n)(∃m < b)θ(k,m), making I a Σ0

2 cut.

Define c : I → N by c(n) = µm(∀k < n)θ(k,m); notice that c is increasing. θ(n,m) is

Π0
1, so it can be rewritten θ(n,m) = ∀kψ(n,m, k) where ψ(n,m, k) is bounded. The

graph of c is ∆0
2, as it is the limit of the graphs of cs : I → N defined by

cs(n) = µm
(
(∀k ≤ s)ψ(n,m, k) ∨ (m = s)

)
Clearly cs is computable for all s.

The domain of c is I, for IΣ0
1 is enough to show that if there is an m such that

θ(n,m), there is always a least such m. To show that c is cofinal, if ∃b(∀n ∈ I)(c(n) <

b), then ∀n(n ∈ I ↔ (∃m < b)θ(n,m)). This means that the cut witnesses the failure

of IΠ0
1, which is impossible; therefore, c is cofinal.

If c is not increasing, define c : I → N by c(n) = µm(∀k < n)θ(n,m); this

increasing cofinal function exists by BΣ0
2.
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Theorem 3.3.17 (Dorais-Harris, RCA0 + BΣ0
2). Assume that N = (N,X) is a model

of RCA0 +BΣ0
2 +¬IΣ0

2. Then there exists m ∈ N such that there are no good m-tuples.

Proof. By Lemma 3.3.16, let I ⊆ N be a proper Σ0
2 cut, and let c : I → N be an

increasing cofinal function whose graph is ∆0
2. Assume that c(0) = 0. Also as in

Lemma 3.3.16, let cs(n) : N → N be defined as cs(n) = µm
(
(∀k ≤ s)ψ(n,m, k) ∨

(m = s)
)
, so that c = lim

s
(cs � I); then cs(n) is nondecreasing in n.

Fix m /∈ I. Assume that 〈X0, . . . , Xm−1〉 is a good m-tuple. (In this proof, we

will define our enumeration functions eXi
to be partial; our proof will be simpler this

way.) Assume that if eXi+1
(s) = x then eXi

(s′) = x for some s′ < s. Also assume that

if eXi
(s) = x, then x < cs(m− 1); if not, use a different slower enumeration. This is

possible since for m /∈ I, lim
s
cs(m) =∞, by the way we have defined c, ψ, and I.

For 1 ≤ i ≤ m− 1, define Yi as follows:

Yi = {x : ∃s(eXi
(s) = x ∧ cs(i− 1) ≤ x < cs(i)) }

Clearly Yi ⊆ Xi and Yi is enumerable. If i < j, then Yi∩Yj = ∅, for if x ∈ Yi∩Yj, then

x enters Xi at an earlier stage than Xj, so eXi
(s1) = x ∧ eXj

(s2) = x implies s1 < s2

and thus cs1(i− 1) ≤ x < cs1(i) ≤ cs2(i) ≤ cs2(j − 1) ≤ x < cs2(j), a contradiction.

To show Xi−1\(Y1 ∪ · · · ∪ Yi) is enumerable, we have two cases. Case 1: i− 1 ∈ I.

In this case, Y1 ∪ Y2 ∪ · · · ∪ Yi ⊆ {0, . . . , c(i)}, and so Xi−1 ∩ (Y1 ∪ · · · ∪ Yi) is finite,

implying that Xi−1\(Y1 ∪ · · · ∪ Yi) is enumerable. Case 2: i − 1 /∈ I. In this case,

lim
s
cs(i− 1) =∞, and so to determine whether x ∈ Xi−1\(Y1 ∪ · · · ∪ Yi), we need to

check that eXi−1
(s) = x for some s, and for this s we need x ≥ cs(i − 1); otherwise

x ∈ Y1 ∪ · · · ∪ Yi−1. We also need to find the first t > s such that x < ct(i − 1)

and ensure that there is no t′ < t such that eXi
(t′) = x and ct′(i − 1) ≤ x < ct′(i);
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otherwise x ∈ Yi. This can be checked computably once we know x ∈ Xi−1, and so

in our Case 2 we have Xi−1\(Y1 ∪ · · · ∪ Yi) is enumerable.

Observe that no obvious uniform sequence of functions exists, since whileXi−1\(Y1∪

· · · ∪ Yi) is enumerable, it requires checking whether i ∈ I, and this cannot be done

with an obvious fi−1 : Xi−1 → {0, . . . , i} in our model.

On the other hand, Xm−1\(Y1 ∪ · · · ∪ Ym−1) = ∅. Let x ∈ Xm−1; then let s be

such that eXm−1(s) = x. We know that x < cs(m − 1). Since cs is nondecreasing

and cs(0) = 0, choose i such that cs(i − 1) ≤ x < cs(i) and x ∈ Yi. Therefore,

〈X0, . . . , Xm−1〉 is not actually a good tuple, a contradiction.

Corollary 3.3.18 (RCA0 + BΣ0
2).

[∀m( [there are no good m-tuples] → ACA0 ) ] → IΣ0
2

.

Proof. This is immediate from Theorem 3.3.17, and the fact that ¬IΣ0
2 implies ¬ACA0.

3.4 Extension: Improved results on Grundy color-

ings

Schmerl [34] investigated the reverse mathematics of Grundy colorings, and in the

process he introduced the concept of a good tuple from Section 3.3. The major results

in [34] required certain parameters n to be standard. In this section, we remove that

requirement and generalize Schmerl’s results.
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Definition 3.4.1. Let G = (V,E) be a graph. Let k ∈ N and ϕ : V → k be a

coloring. The coloring is proper if ϕ(x) 6= ϕ(y) whenever (x, y) ∈ E. The coloring is

Grundy if for every vertex x,

ϕ(x) = min{i ∈ N : ∀y[(x, y) ∈ E → ϕ(y) 6= i] }

Definition 3.4.2. A graph is k-colorable if it has a proper k-coloring. The chromatic

number χ(G) is the smallest such k such that G is k-colorable. The Grundy number

Γ(G) is the largest possible k such that G has a Grundy k-coloring.

Essentially, a Grundy coloring orders the vertices in some way, and applies a

greedy coloring algorithm, coloring each vertex in turn with the smallest possible

color. Different orderings of the vertices will result in different Grundy colorings from

different greedy algorithms; Γ(G) is the maximum possible number of colors.

Figure 3.1 gives an example: two identical crown graphs with different vertex

labels; with these labels, the greedy algorithm will produce the two distinct Grundy

colorings given in the figure. Here the vertex name is given by the number label, and

the color given by the shading. The colors are ordered from lightest to darkest (hence

in the right graph: white=1, red=2, blue=3, black=4).

We can also define γ(G) as the smallest possible k such that G has a Grundy k-

coloring. If we assume all of second-order arithmetic, we can show that χ(G) = γ(G):

Within the collection of minimal colorings, choose the one with a maximal set of

vertices for color 1; given that set, choose a maximal set of vertices for color 2, and

so on. This color is clearly Grundy. If we have Zorn’s Lemma, we can extend this

to infinite graphs as well. However, when working in weaker subsystems, χ(G) and

γ(G) may well be unequal.

Definition 3.4.3. Let F be a class of finite graphs. Forb(F) is the class of countable
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Figure 3.1: Two different Grundy colorings of a crown graphG; the right one witnesses
Γ(G) = 4.

graphs that do not have an induced subgraph isomorphic to any graph in F .

Definition 3.4.4. C is a natural class of graphs if C = Forb(F) for some set of

connected finite graphs F .

Definition 3.4.5. Let C be a natural class of graphs.

• χ(C) = sup{χ(G) : G ∈ C}

• γ(C) = sup{γ(G) : G ∈ C}

• Γ(C) = sup{Γ(G) : G ∈ C}

It is trivial that as long as all three exist, we have χ(C) ≤ γ(C) ≤ Γ(C). However,

showing that χ(C) = γ(C) requires ACA0:

Theorem 3.4.6 (Schmerl, Theorem 1.1 in [34]) (RCA0). Let n < ω. If there is a

natural class C such that γ(C) < n = Γ(C), then ACA0 holds.

Notice that this theorem requires n to be standard. To help us prove that the

statement holds when n is not standard, we recall a useful propostition from Schmerl’s

paper.
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Definition 3.4.7. If G is a graph and W ⊆ V (G), then G[W ] is the induced subgraph

H of G such that V (H) = W .

Proposition 3.4.8 (Schmerl, Lemma 2.1 in [34]) (RCA0). Suppose that ϕ : V (G)→

N is a Grundy coloring of the graph G, and suppose that a ∈ V (G) and ϕ(a) = x.

Then there is a W ⊆ V (G) such that a ∈ W , |W | ≤ 2x, and ϕ � W is a Grundy

coloring of G[W ].

Proof. We prove this by induction on x. If x = 0, then let W = {a}. Now suppose

that b ∈ V (G) is such that ϕ(b) = x + 1. Since ϕ is a Grundy coloring, b must

connect to x different vertices that are colored with all available colors ≤ x. For each

y ≤ x, let ay ∈ V (G) be the least vertex such that (ay, b) ∈ E(G) and ϕ(ay) = y.

By the inductive hypothesis, let Wy be such that ay ∈ Wy, |Wy| ≤ 2y, and ϕ � Wy is

a Grundy coloring of G[Wy]. Let W = W0 ∪W1 ∪ · · · ∪Wx and W has the desired

properties.

We are ready to prove:

Theorem 3.4.9 (RCA0 + IΣ0
2). Suppose that there is a natural class C such that

γ(C) < Γ(C). Then ACA0 holds.

Proof. We will mimic Schmerl’s proof of Theorem 3.4.6, but will use our concept of

a good-for-uniform tuple from Section 3.3.

We work in a model N = (N,X) that satisfies RCA0. Assume that N 2 ACA0.

First let us consider the case where C is a natural class with Γ(C) = n ∈ N; we will

handle the infinite case separately. Note that n ≥ 3.

By the proof of Proposition 3.4.8, there is G′ = (V ′, E ′) ∈ C such that Γ(G′) = n

and |V ′| ≤ 2n−1. Let G = (V,E) be a minimal induced subgraph of G′ such that
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Γ(G) = n (and since natural classes are closed under finite induced subgraphs, G ∈ C

as well); for the remainder of the proof we will work with G and not G′. For each

i < n, let Gi = (Vi, Ei) be the induced subgraph of G consisting of those vertices

x for which ϕ(x) ≤ i. From the proof of Proposition 3.4.8 we see that if Gi ( G,

then Γ(Gi) < n. (Since in the construction, the vertex an is the first that we are

connecting to n vertices.) Let ϕ : V → n be a Grundy coloring of G that witnesses

Γ(G) = n.

By Theorem 3.3.11, there exists a good-for-uniform n-tuple 〈X0, X1, . . . , Xn−1〉.

We define a graph H = (W,F ) that is the disjoint union of graphs Hx, for x ∈ X0,

such that Hx = (Wx, Fx) is isomorphic to Gi if and only if x ∈ Xi\Xi+1 (where

Xn = ∅). Precisely, for each i < n,

(s, v, x) ∈ Wx ⇐⇒ (∃i < n)(eXi
(s) = x) ∧ (v ∈ Vi\Vi−1)

((s1, v1, x), (s2, v2, x)) ∈ Fx ⇐⇒ (v1, v2) ∈ E

Let hx : Vi → Wx be an explicit isomorphism between Gi and Hx:

hx(v) = (s, v, x)

Let H = ∪xHx = ∪x (Wx, Fx). Crucially, our usage of s such that eXi
(s) = x ensures

that our graph H ∈ X, even though each Xi is an enumerable set and may not be in

X.

Let N = ∪xWx, so that N is the set of vertices of H. Clearly H ∈ C, so since

by assumption γ(C) < n, we know that there exists a Grundy coloring ψ for H,

ψ : N → (n− 1). The coloring ψ exists in our model, ı.e., ψ ∈ X.
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Define our sequence 〈f0, . . . , fn−2〉, fi : Xi → {0, 1, . . . , i+ 1}, as follows:

fi(x) = j ≤ i ⇐⇒ ψ ◦ hx � Vj 6= ϕ � Vj and this is the first j where this fails.

fi(x) = i+ 1 ⇐⇒ ψ ◦ hx � Vj = ϕ � Vj for all j ≤ i

Let us check that our fi’s satisfy the hypotheses for a good-for-uniform n-tuple.

Clearly dom fi = Xi. It is also clear that f−1
i+1{j} = f−1

i {j}∩Xi+1 for all j ≤ i < n−2.

We need to check that f−1
i {i} ⊆ Xi+1 for all i < n − 1. For i = 0, if f0(x) = 0 and

x ∈ X0\X1, then since ϕ is Grundy, Wx is a set of disconnected points, and so ϕ and

ψ◦hx are both identically 0 on V0, since both are Grundy. Now suppose 0 < i < n−1

and fi(x) = i, so that ψ ◦ hx � Vi−1 = ϕ � Vi−1. If we also had x ∈ Xi\Xi+1, then Hx

is isomorphic to Gi, and we have ψ ◦hx = ϕ � Vi, since ψ and ϕ are both Grundy, and

the only vertices in Vi\Vi−1 are those with ϕ(x) exactly equal to i, while all vertices

in Vi−1 are already colored according to ϕ. This of course is a contradiction, since it

means fi(x) = i+ 1, and so our assumption that x ∈ Xi\Xi+1 was wrong.

So all the hypotheses are satisfied, and we can conclude that f−1
n−2{n−1}∩Xn−1 6=

∅. That is, there is x ∈ Xn−1 with ψ ◦ hx � Vn−2 = ϕ � Vn−2. So Hx
∼= Gn−1;

by a similar argument as in the last paragraph, since ψ is Grundy, we also have

ψ ◦ hx = ϕ � Vn−1 = ϕ. But this is a contradiction since n − 1 ∈ ran(ϕ) but

n− 1 /∈ ran(ψ). So ACA0 holds.

Finally, what if γ(C) < Γ(C) =∞? We can still use the proof of Proposition 3.4.8.

Let G ∈ C be a graph with Γ(G) ≥ γ(C)+1, and let ϕ : V (G)→ N be a coloring that

witnesses this inequality. Let x in that proof be γ(C) + 1, and let a ∈ V (G) be such

that ϕ(a) = x. Then there is H ⊆ G such that a ∈ V (H), |V (H)| ≤ 2x, and ϕ � V (H)

is a Grundy coloring of H. Thus H ∈ C is a finite graph with γ(H) < Γ(H) = γ(C)+1

and we can proceed as in the first part of the proof.

79



As a corollary, we can get Theorem 3.4.6, which states that Theorem 3.4.9 is

provable in RCA0 if γ(C) is standard. Just replace the reference to Theorem 3.3.11

with a reference to Corollary 3.3.12 in the proof of Theorem 3.4.9.

3.5 Conclusion (Metatheorem)

Metatheorem 3.5.1. Let P = (A,B,R) be a bounded problem with a primitive

recursive relation R. (A,B,R′) is the closed kernel of P.

(a) If (A,B,R) is on-line solvable, then RCA0 ` SeqPk(A,B,R) for every standard

k < ω.

(b) If (A,B,R′) is solvable but (A,B,R) is not on-line solvable, then there exists a

standard k < ω such that RCA0 ` (SeqPk(A,B,R)↔ WKL0).

(c) If (A,B,R) is solvable but (A,B,R′) is not solvable, then there exists a standard

k < ω such that RCA0 ` (SeqPk(A,B,R)↔ ACA0).

Proof. First we prove (a). Let k < ω. Bob has a winning strategy in Gk(A,B,R);

since R is primitive recursive, k < ω, and the problem is bounded, the maximum

play Mk(A,B,R) exists and is standard. (Recall Definition 3.2.3.) Therefore, Bob’s

entire strategy in Gk(A,B,R) is primitive recursive, and so RCA0 proves that Bob has

a winning strategy in Gk(A,B,R). Now we can apply Theorem 3.2.2 to show that

RCA0 ` SeqPk(A,B,R).

Next we prove (b). Let k < ω. If ā is a request of length k by Alice, then Bob

has a winning response b̄ such that (ā � j) R (b̄ � j) holds for all j, 0 < j ≤ k. Since

R is primitive recursive, k < ω, and the problem is bounded, the maximum play

Mk(A,B,R) exists and is standard. Therefore, in RCA0 we can check all possible ā of

length ≤ k and prove that there is indeed a b̄ of length ≤ k such that (ā�j) R (b̄�j)
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holds for all j, 0 < j ≤ k. Therefore, RCA0 proves that (A ∩ N<k, B ∩ N<k, R′ ∩

(N<k ⊗ N<k)) is solvable. Now we can apply Theorem 3.3.2 to show that WKL0

proves SeqPk(A,B,R).

For the other direction, if (A,B,R) is not on-line solvable, then we can essentially

prove versions of Lemma 3.2.7 and Theorem 3.2.8 using full second-order arithmetic.

The major difference is that the “k ∈ N” in the hypothesis of Lemma 3.2.7 can

be replaced with “k < ω”; similarly, our version of Theorem 3.2.8 will prove the

existence of a k < ω such that Alice has a winning strategy in Gk(A,B,R) if the game

G(A,B,R) is not on-line solvable. Since the game is bounded, we can show that for

this k, Mk(A,B,R) exists and is standard. Since we also have that R is primitive

recursive, we can prove in RCA0 that Alice has a winning strategy in Gk(A,B,R). By

Corollary 3.2.6, we can thus prove in RCA0 that SeqPk(A,B,R)→ WKL0.

Finally we prove (c). Let k < ω. By definition, since (A,B,R) is solvable, for

every request ā of length k, there exists a response b̄ such that ā R b̄ holds. Since

R is primitive recursive, k < ω, and the problem is bounded, the maximum play

Mk(A,B,R) exists and is standard. Therefore, in RCA0 we can check all possible

ā of length ≤ k and prove that there is indeed a b̄ of length ≤ k such that ā R b̄.

Therefore, RCA0 proves that (A ∩ N<k, B ∩ N<k, R′ ∩ (N<k ⊗ N<k)) is solvable. Now

we can apply Proposition 3.3.1 to show that ACA0 proves SeqPk(A,B,R).

For the other direction, if (A,B,R′) is not solvable, then there exists a play ā of

some standard length k such that for any b̄ of length k, we have (ā � j) R (b̄ � j) fails

for some j ≤ k. Since the problem is bounded and R is primitive recursive, we can

prove this in RCA0: simply enumerate all responses b̄ whose plays are bounded by

Mk(A,B,R), and show that the above statement applies to each such b̄. Therefore,

RCA0 proves that (A,B,R′) is not solvable. By part (2) of Corollary 3.3.14, we can

prove in RCA0 that SeqPk(A,B,R)→ ACA0.
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Recall our Conjecture 2.3.20 that ∃kEvadek(2) may be strictly weaker than ∃rEvade1(r),

which is strictly weaker than WKL0 in models of ¬IΣ0
2. If we do not have access to a

standard k < ω as in the hypothesis of Corollary 3.2.6, our result must involve this

weaker principle.

Theorem 3.5.2. Let (A,B,R) be a bounded problem which is not on-line solvable.

Then RCA0 `
(
SeqP(A,B,R) → ∃k∃rEvadek(r)

)
.

Proof. Using the proof of the second direction of part (b) of the Metatheorem, we

can show that there is a k such that RCA0 proves that Alice has a winning strat-

egy in Gk(A,B,R). Then we can apply Theorem 3.2.5 to show, in RCA0, that if

SeqPk(A,B,R) holds, then there exists M such that Predictk(M) fails. Take r = M

and Evadek(r) holds.
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Chapter 4

Applications

In Chapter 3 we classified all sequential problems by reverse-mathematical strength.

In Chapter 4, we will apply these results to show the reverse-mathematical strength

of a variety of concrete sequential problems.

We have chosen to focus on:

• Combinatorial problems: Pigeonhole principles (4.1), Dilworth’s theorems

(4.7), Ramsey’s theorems (4.8).

• Classic on-line algorithm problems: Task scheduling problem (4.4), Paging

problem (4.5), List update problem (4.6).

• Both of the above: Graph colorings (4.2), Marriage/matching problems (4.3).

• Purely reverse-mathematical questions: ∆0
2–evasion (last part of 4.1), Sep-

arating sets (4.9).

Most central ideas are presented in sections 4.1 through 4.4, which is why we

present them first.

Each section will include a definition of the form, “Let P be the problem (A,B,R),”

where A,B are trees and R is a relation. This comes from our formal definition of
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“problem” presented in Section 3.1, whose definitions we will refer to throughout this

chapter. Recall that ACA0 is sufficient to prove the sequential version of any solvable

problem; this is Proposition 3.3.1 and will not always be cited explicitly.

In some of these sections (4.3, 4.8, 4.9) we also consider unbounded problems.

These will essentially always require ACA0, but there is some nuance to their proofs.

In the concluding Section 4.10, we will summarize all applications we have con-

sidered, classifying them by their proof-theoretic strength. We will also revisit the

original motivation for investigating sequential problems — determining whether the

nonsequential problem requires the Law of Excluded Middle.

4.1 Pigeonhole Principles

The Pigeonhole Principle is a prototypical example of a problem without a solvable

closed kernel, and thus ACA0 is required to prove the sequential version. The non-

optimal thin variation, presented in Theorem 4.1.2, is equivalent to ACA0 over RCA0+

IΣ0
2. The proofs below provide a good overview of the “all solutions have an unsolvable

initial segment” condition and the ways we might encounter it, particularly the non-

optimal thin variation, where our example has k − 1 distinct correct answers, all of

which fail at different initial segments.

Theorem 4.1.1. The following are equivalent over RCA0:

(i) ACA0

(ii) The Sequential Finite Pigeonhole Principle: Given k ≥ 2 and a sequence

〈An, fn〉n∈N , where An is a finite set and fn : An → {0, 1, . . . , k − 1}, there is a

sequence 〈yn〉n∈N such that
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∀n
(
|{x ∈ An : fn(x) = yn}| ≥

|An|
k

)
.

(iii) The Non-Optimal Sequential Finite Pigeonhole Principle: Let k ≥ 2 and p ∈

(0, 1
k
]. Given a sequence 〈An, fn〉n∈N, where An is a finite set and fn : An →

{0, . . . , k − 1}, there is a sequence 〈yn〉n∈N such that

∀n ( |{x ∈ An : fn(x) = yn}| ≥ p|An| ) .

Proof. It is clearly enough to show that (i) ⇔ (iii). (Note that (iii) is false if p > 1
k
.)

Define the problem PP(k, p) as the following problem (A,B,R): A = k<∞; B is

the tree of all constant finite sequences of elements in {0, . . . , k− 1}; R is defined by:

ā R b̄ if and only if b̄ = 〈y, y, . . . , y〉 and |{i : ai = y}| ≥ p|ā|.

It is easy to see that SeqPP(k, p) and (iii) are equivalent over RCA0. There is a

direct correspondence between triples (i, si, ai) ∈ Xn in the hypothesis of SeqPP(k, p)

and pairs (x, fn(x)) in the hypothesis of (iii); the rest of the equivalence is straight-

forward. Notice that this equivalence would fail if we only required the last response

in b̄ to be the correct y. For if we assumed SeqPP(k, p) and the hypothesis of (iii),

we would not know how long to wait until y was enumerated.

Let N be such that N > 1/p. Note that this implies that N > k.

Let ā be defined as follows:
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a0 = 0

a1 = · · · = aN = 1

aN+1 = · · · = a2N = 2

· · ·

a(k−1)(N−1)+1 = · · · = a(k−1)N = k − 1

a(k−1)N+1 = · · · = a(k−1)N+N2−1 = 0

The only correct response is b̄ = 0̄, for |i : ai = 0| = N2 ≥ 2
k
N2 ≥ 2pN2 =

pN(2N) ≥ pN(k − 1 +N) = p((k − 1)N +N2) = p|ā|.

For any other j < k, we have |i : ai = j| = N < k − 1 + N < pN(k − 1 + N) =

p((k − 1)N +N2) = p|ā|.

However, if we consider the initial segment (ā � (k − 1)N + 1), 0 is not a correct

response, since 0 only occurs once as a request, and the initial segment has length

(k − 1)N + 1 ≥ N > 1/p.

Therefore, the closed kernel of this problem is not solvable, and so SeqPP(k, p)

and (iii) both are equivalent to ACA0 by Proposition 3.3.3.

In the above example, I choose a problem where both the full ā and the initial

segment ā � j contained every i < k; there are simpler examples where this is not the

case.

The next example asserts the existence of a sequence of “least popular” choices,

choosing an element y < k such that at least (1− 1
k
) of the domain gets assigned an

element other than y:

Theorem 4.1.2. The following are equivalent over RCA0 + IΣ0
2:

(i) ACA0
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(ii) The Sequential Pigeonhole Principle, Thin Variation: Given k ≥ 2 and a se-

quence 〈An, fn〉n∈N , where An is a finite set and fn : An → {0, 1, . . . , k − 1},

there is a sequence 〈yn〉n∈N such that

∀n (|{x ∈ An : fn(x) 6= yn}| ≥
|An|(k − 1)

k
).

(iii) The Sequential Pigeonhole Principle, Non-Optimal Thin Variation : Let k ≥ 2

and p ∈ (0, 1 − 1
k
]. Given a sequence 〈An, fn〉n∈N, where An is a finite set and

fn : An → {0, . . . , k − 1}, there is a sequence 〈yn〉n∈N such that

∀n (|{x ∈ An : fn(x) 6= yn}| ≥ p|An|.

Proof. It is clearly enough to show that (i)⇔ (iii). Note that (iii) is false if p > 1− 1
k
.

In proving this example, it is particularly evident why we need the results about

the closed kernel from the previous chapter. In Theorem 2.2.1, we saw a straightfor-

ward (not using closed kernels) proof for the optimal problem, but the non-optimal

problem is tricky for p ≤ 1− 2
k+1

. There are often multiple correct choices for yn, and

for p small enough, there is at most one wrong choice for yn.

Define the problem ThinPP(k, p) as the following problem (A,B,R): A = k<∞; B

is the tree of all constant finite sequences of elements of {0, . . . , k − 1}; R is defined

by: ā R b̄ if and only if b̄ = 〈y, y, . . . , y〉 and |{i : ai 6= y} ≥ p|ā|. It is easy to see

that SeqThinPP(k, p) and (iii) are equivalent over RCA0.

Let N be such that N > max(1/p, k).
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Let ā be defined as follows:

a0 = 0

a1 = · · · = aN = 1

aN+1 = · · · = aN+N2 = 2

aN+N2+1 = · · · = aN+N2+N3 = 3

· · ·

aN+N2+ ···+Nk−2+1 = · · · = aN+N2+ ···+Nk−1 = k − 1

aN+N2+ ···+Nk−1+1 = · · · = aN+N2+ ···+Nk−1+Nk = 0

Any constant response is correct other than b̄ = 0̄ which is incorrect, since |i :

ai 6= 0| = N + N2 + · · · + Nk−1 < pN(N + N2 + · · · + Nk−1) = p(N2 + · · · + Nk) <

p(1 + N + N2 + · · · + Nk) = p|ā|. Observe that if it happened that a0 6= 0, a very

similar argument would still hold.

Let us be sure that b̄ = k − 1 is a correct response; if it is, then 1̄, . . . , k − 2

certainly are. Note that N > k implies that Nk > Nk−1(k − 1) which implies that

Nk−1 − (Nk + Nk−1)/k < 0. From this we can conclude that |i : ai 6= k − 1| =

1 +N +N2 + · · ·+Nk−2 +Nk > 1 +N +N2 + · · ·+Nk−2 + (1− 1/k)(Nk +Nk−1) ≥

p(1 +N +N2 + · · ·+Nk−1 +Nk) = p|ā|.

So we have k−1 correct responses, the constant sequences 1̄, 2̄, . . . , k − 1, and one

incorrect response 0̄. However, every single one of the correct responses is incorrect

at some initial segment: namely, ī is incorrect at ā � (1 +N +N2 + · · ·+N i); see our

observation in the second-to-last-paragraph.

Therefore, the closed kernel of this problem is not solvable, and so SeqThinPP(k, p)

and (iii) both are equivalent to ACA0 over RCA0 + IΣ0
2 by Corollary 3.3.14.
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∆0
2–Evasion

In Section 2.3, we introduced the equivalent principles DNR(k) and Evade1(k) (both

equivalent to WKL0 for standard k ≥ 2), which assert the existence of a function

g : N → k that avoids every Σ0
1-function f ⊆: N → k. Here we consider a similar

principle for ∆0
2 functions, which informally asserts that for every ∆0

2 function f :

N → k, there exists an evading function g : N → k such that ∀n(g(n) 6= f(n)).

Because of the relationship between this principle and the non-optimal pigeonhole

principle, we include it in this section.

Definition 4.1.3. Let k ≥ 3. ∆0
2–Evade1(k) is the statement: Let 〈fs〉s∈N be a

sequence of functions, fs : N → k such that ∀n∃t(∀t′ > t)(ft′(n) = ft(n)). Then

there exists a function g : N → k such that ∀n(g(n) 6= ft(n)), where t is the witness

in the above hypothesis.

We start by considering k = 3 because ∆0
2–Evade1(2) very clearly allows us to

compute the halting problem, and is therefore equivalent to ACA0. For k ≥ 3, this

equivalence is less immediate. Nevertheless, by observing a relationship with the

non-optimal pigeonhole principle, we show that it too is equivalent to ACA0.

Proposition 4.1.4 (RCA0). For k ≥ 3, the following are equivalent:

(i) ∆0
2–Evade1(k)

(ii) The Sequential Pigeonhole Principle, Non-Optimal Thin Variation for p ∈

(0, 1/2]: Let p ∈ (0, 1/2]. Assume that 〈An, fn〉n∈N are such that An is a fi-

nite set and fn : An → {0, . . . , k − 1}. Then there is a sequence 〈yn〉n∈N such

that

∀n (|{x ∈ An : fn(x) 6= yn}| ≥ p|An|) .
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Proof. (i) ⇒ (ii): Assume ∆0
2–Evade1(k), and let 〈An, fn〉n∈N be as in the hypothesis

of (ii). Define 〈hs〉s∈N, hs : N→ k, as follows: hs(n) = the least j such that

(∀j′ < k) |{x : x ≤ s ∧ fn(x) = j′}| ≤ |{x : x ≤ s ∧ fn(x) = j}|.

Since the domain of each fn is finite, there clearly exists a limiting t(n) as in the

hypothesis of ∆0
2–Evade1(k). Let g be the evading function guaranteed by (i). Define

yn = g(n). Then for a given n, |{x ∈ An : fn(x) 6= yn}| ≥ 1
2
· |An| ≥ p|An|, with the

first inequality being an equality only when | ran fn| = 2 and the two values occur

equally often, with g(n) choosing the higher of the two.

(ii) ⇒ (i): Assume (ii), and let 〈fs〉s∈N be functions that satisfy the hypothesis in

(i). Also, let N > 1/p. Define a sequence 〈hn〉n∈N of finite functions as follows: For

each n, hn(0) = f0(n). At stage s > 0, let t be the greatest value such that hn(t)

is defined at stage s − 1, and let M be the total number of values of hn defined by

stage s − 1. If fs(n) = j 6= fs−1(n), then define hn(t + 1) = j, . . . , hn(t + NM) = j.

Each hn will be finite, as the fs(n)’s will eventually reach their limit. Let 〈yn〉n∈N be

the sequence guaranteed by (ii). If j = lims fs(n), then |{x : hn(x) 6= j}| ≤ M =

1
N

(NM) < p · (NM), where M is the final value of M used in the construction.

Therefore, yn 6= j. So if we define g : N → k by g(n) = yn, then we have g(n) 6=

lims fs(n) for all n, as desired.

Corollary 4.1.5 (RCA0 + IΣ0
2). For k ≥ 2, we have ∆0

2–Evade1(k) ↔ ACA0.
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4.2 Graph Colorings

Graph colorings have played a major role throughout this thesis. Basic graph-related

definitions were given in Section 1.2, and much of the work in this section has already

been shown in Section 2.4. However, in this section our Chapter 3 results will allow

us to analyze the sequential coloring problem more efficiently.

A finite graph G can be coded as 〈e0, e1, . . . , en〉, with the length n of the sequence

giving the number of vertices, and ei < 2i encoding through its binary representation

how vertex vi connects by an edge to v0, . . . , vn−1. In this section, whenever we talk

about a set of “coded finite graphs,” we will be talking about a set C ⊆ N of codes

as described above.

Definition 4.2.1. Let C be a set of coded finite graphs. The corresponding universal

class C consists of all graphs G = (V,E) all of whose finite induced subgraphs are

isomorphic to an element of C.

We say that C is k-bounded if every element of C (and hence every element of C)

has size at most k.

Given any universal class C, we write C≤k for the k-bounded universal class gen-

erated by the elements of C with size at most k.

For example, we could take C to be the set of all (coded) finite forests, and the

corresponding C would be the universal class of all forests. Or, as in Proposition

1.2.6, if we wished C to be the universal class of all bipartite graphs that avoid P6,

then C would be the set of all finite graphs of this type. Though it is not required,

we may always assume that the set C is closed under isomorphisms and induced

subgraphs.

Since there are only finitely many codes for graphs on n vertices, the universal

class C is always a Π0
1-class with parameter C. Notice that in the two examples for C
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in the previous paragraph, the set C is definable by a primitive recursive predicate.

Definition 4.2.2. Col(C, r) is the problem (A,B,R), where A = N<∞, B = r<∞.

(ā, b̄) ∈ R if the following is true: If ai < 2i, and if by using the binary representation

of ai to determine which of vertices 0, . . . , i − 1 are connected to vertex i, we have

that the resulting graph is in C, then coloring vertices according to b̄ results in a valid

coloring.

Let us explicitly describe the game G(C, r), which is the game G(A,B,R) using

our terminology from Definition 3.1.2:

• Alice plays a new graph vertex and specifies whether or not it is connected by an

edge with each vertex that she played on an earlier round. Alice is guaranteed

to lose if the graph played thus far does not belong to the class C.

• Bob responds by assigning a color from {0, . . . , r − 1} to the vertex that Alice

just played. Bob loses immediately if the colors assigned thus far do not form

a valid r-coloring of the graph.

Bob wins if the game goes on indefinitely without either player losing.

If we exclude the “invalid” moves that immediately guarantee a player’s loss, each

player has only finitely many possible moves on each round and the player’s moves

can be coded using integers of fixed size:

Alice e0 e1 e2 · · ·

Bob c0 c1 c2 · · ·

where ei < 2i encodes through its binary representation how the ith vertex played by

Alice is connected by an edge with the previous vertices, and ci < r is the color that

Bob assigns to the ith vertex.
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Our major results in Chapter 3 give the following:

Theorem 4.2.3 (RCA0). Let C be a universal class of graphs such that Col(C, r) is

solvable. Then WKL0 ` SeqCol(C, r).

Proof. Col(C, r) is a semi-bounded problem (responses are bounded by r) with a

solvable closed kernel, since every finite restriction of a valid coloring is still a valid

coloring. By Theorem 3.3.2, WKL0 proves SeqCol(C, r).

The above theorem only required Col(C, r) to be semi-bounded, but there is an

equivalent bounded problem: in round j, Alice simply plays the edge relation with all

vertices played in rounds 0 through j− 1, and we do not worry about naming Alice’s

vertices.

We can compare Theorem 4.2.3 to the result of Gasarch and Hirst [13] that WKL0

is equivalent to the statement that every locally r-colorable (possibly infinite) graph

is r-colorable, and observe that a sequence of finite graphs can be viewed as an infinite

graph.

Theorem 4.2.4 (RCA0). Let C be a universal class of graphs, and let r ∈ N.

• If Col(C, r) is on-line solvable, then SeqCol(C, r) holds.

• For any k ∈ N, suppose that Col(C≤k, r) is not on-line solvable and Predictk(M)

holds, where M = max{2k, r}. Then SeqCol(C≤k, r) fails.

Proof. Theorems 3.2.2 and 3.2.5.

Corollary 4.2.5 (RCA0). Suppose C is a k-bounded universal class of graphs and

suppose Predictk(r) holds. Then SeqCol(C, r) holds if and only if Bob has a winning

strategy in the game G(C, r).
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Note that if C is a Π0
1 universal class of graphs then there is a primitive recursive

listing of finite graphs such that a graph G belongs to the class C if and only if no

finite subgraph of G is isomorphic to a graph in this list.

Theorem 4.2.6. Suppose there is k such that C is a k-bounded universal class of

graphs. For every r ≥ 1, the following are equivalent:

• Col(C, r) is on-line solvable.

• RCA0 ` SeqCol(C, r).

Proof. Suppose that Col(C, r) is on-line solvable. Fix a bound k on the graphs in C.

Then k is standard, and the class C has a primitive recursive definition. Thus both

C and k are expressible in RCA0, and Bob’s winning strategy is a clear uniformly

computable procedure that is definable in RCA0. So RCA0 ` Col(C, r) and Theorem

4.2.4 shows that SeqCol(C, r) holds. For the other direction, assume that Col(C, r) is

not on-line solvable. Since G(C, r) is determined (assuming all of second-order arith-

metic), this means that Alice has a winning strategy in G(C≤k, r) for some standard

number k. By the second part of Theorem 4.2.4, since SeqCol(C≤k, r) holds, we know

that Evadek(r) holds, implying WKL0 by Corollary 2.3.13.

Corollary 4.2.7. Suppose C is a universal class of graphs with a primitive recursive

code. For every r, 1 ≤ r < ω, the following are equivalent:

• Bob has a winning strategy in G(C, r).

• For every k < ω, RCA0 ` SeqCol(C≤k, r).

Corollary 4.2.8. Let C be a universal class of graphs with a primitive recursive code

which is not on-line colorable with any number of colors.

Then RCA0 ` ∀r(SeqCol(C, r)→ ∃kEvadek(r)).
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Proof. This is a specific instance of Corollary 3.5.2.

4.3 Marriage Problems

This section is joint work with Dorais.

A marriage problem is a triple (B,G,R) where B,G are sets and R ⊆ B ×G. A

matching is a one-to-one partial function B → G whose graph is contained in R; a

perfect matching is one which is total. In anthropomorphic terms, B is a set of boys,

G is a set of girls and (b, g) ∈ R (also written b R g) indicates that boy b and girl

g can see each other. A matching is a marriage between boys and girls who can see

each other where polygamy and polyandry are forbidden.

In this section, we will always say that “boy b sees girl g” to indicate that b R g.

Hall’s Theorem [18] gives a necessary and sufficient condition for a finite marriage

problem to have a perfect matching, which is the case α = 1 of the following definition.

Definition 4.3.1. Given a positive real number α, a marriage problem (B,G,R)

satisfies the α-Hall condition if for every finite set B0 ⊆ B, the set

RB0 = {g ∈ G : (∃b ∈ B0)(b R g)}

has size at least α|B0|.

For positive real numbers α and β, Match(α, β) will denote the statement that ev-

ery finite marriage problem (B,G,R) that satisfies the α-Hall condition has a match-

ing M of size at least β|B|. Matchk(α, β) denotes the same statement where, in addi-

tion, one requires that G = {1, . . . , k}. We make this precise by defining it using the

language of Chapter 3:
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Definition 4.3.2. Let α and β be positive real numbers. Match(α, β) is the problem

(A,C, S), where A = N<∞, C = N<∞, and (ā, c̄) ∈ S if the following is true: If the

binary representation of ai encodes the set of girls that boy i sees, and if the resulting

graph satisfies the α-Hall condition, then if we match boy i to girl ci if ci > 0, and

we do not match boy i if ci = 0, our resulting function M is a valid matching of size

at least β|ā|.

With this terminology, Hall’s Theorem states that Match(1, 1) is true. Sequential

versions of Hall’s Theorem were investigated by Fujiwara and Yokoyama [12] who

showed that an unbounded sequential version of Match(1, 1) is equivalent to ACA0

over RCA0. As a consequence of Theorems 4.3.6 and 4.3.7 below, we will see that

∀kSeqMatchk(1, 1) is equivalent to WKL0 over RCA0. These last two results should be

compared with similar results of Hirst and Hughes [23] who studied infinite marriage

problems where each boy sees only finitely many girls; an infinite branch through A

would encode such an infinite marriage problem.

Proposition 4.3.3 (RCA0). For every α > 0, Match(α,min(α, 1)) holds.

Proof. The König Duality Theorem says that every bipartite graph has a matching

M and a vertex cover C such that every edge in M has exactly one vertex in C.

For finite bipartite graphs, the proof can be carried out in RCA0. It follows that for

every finite marriage problem (B,G,R) there is a matching M and sets B0 ⊆ B,

G0 ⊆ G such that each pair in R contains either a boy from B0 or a girl from G0,

but no boy from B0 is matched with a girl from G0 by M. It follows from this that

R(B − B0) ⊆ G0 and |M | = |B0| + |G0|. If (B,G,R) satisfies the α-Hall condition,

then |G0| ≥ α(|B| − |B0|) and hence

|M | = |B0|+ |G0| ≥ α|B|+ (1− α)|B0| ≥ min(α, 1)|B|,

96



as required.

Proposition 4.3.4 (RCA0). For all α > 0, Match(α, α/(1 + α)) is on-line solvable.

By Theorem 3.2.2, this implies SeqMatch(α, α/(1 + α)).

Proof. The matching produced by applying the greedy algorithm (or any on-line al-

gorithm that systematically produces a maximal matching) to each marriage problem

has this property. Indeed, if (B,G,R) satisfies the α-Hall condition and M is a max-

imal matching and B0 is the set of boys that aren’t matched in M, then RB0 must

be contained in the set of girls that are matched in M by the maximality of M. Thus

|M | = |B| − |B0| ≥ |RB0| ≥ α|B0|, which means that |B| ≥ (1 + α)|B0| and hence

that |M |/|B| ≥ α/(1 + α).

Theorem 4.3.5 (RCA0). Let k ∈ N, and let α, β be positive real numbers. If d, e ∈ N

are such that k ≥ α(d + e) and αe ≤ d < β(d + e), then Matchk(α, β) is not on-line

solvable.

Proof. First some algebra reveals that

α

(1 + α)
≤

d
e

1 + d
e

=
d

d+ e
< β

contrasting this with Proposition 4.3.4.

We build a marriage problem with k girls, which will have at most d + e boys in

the matching (but potentially more unmatched boys in B). In the two-player game,

Alice will allow boys to see all k girls, and Bob will decide his own matching, until

there are d boys matched. After the first d, however, the next e boys will see precisely

the girls that the first d boys are matched with. (Note that if Bob waits indefinitely

to make the dth matching, he will lose.)
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Any subset of the last e boys sees at least d ≥ αe girls, satisfying the α-Hall

condition. Any other subset of boys sees at least k ≥ α(d + e) girls, also satisfying

the α-Hall condition. However, only d boys are matched to a girl, and d < (d+ e)β;

therefore, our problem witnesses the failure of Matchk(α, β).

By the results of Chapter 3, we can conclude:

Theorem 4.3.6. Let α and β be positive rational numbers.

• If β ≤ α/(1 + α), then RCA0 ` ∀kSeqMatchk(α, β).

• If α/(1 + α) < β ≤ min(1, α), then RCA0 ` (if Predictd+e(2
kn) holds for some

d, e, k with k ≥ α(d+ e) and αe ≤ d < β(d+ e) then ¬SeqMatchk(α, β)).

• If α/(1 + α) < β ≤ min(1, α), then RCA0 ` ∀kSeqMatchk(α, β)→ WKL0.

Proof. The first two statements follow from Theorem 3.2.2, Theorem 3.2.5, Propo-

sition 4.3.4, and Theorem 4.3.5. For the third, choose d, e such that α/(1 + α) <

d/(d+e) < β, and choose k ≥ α(d+e). Then Predictd+e(k+1) fails, and since clearly

we can choose these d, e, k to be standard, we have WKL0 by Corollary 2.3.13.

The restriction to rational numbers α, β is only so that the statements make sense.

We now show that the bounded problem Matchk(α, β), has a solvable closed kernel,

implying that WKL0 is sufficient as well as necessary for solving its sequential version:

Theorem 4.3.7. Let k ∈ N and let α, β be positive real numbers, with β ≤ min(α, 1).

Then the closed kernel of Matchk(α, β) is solvable; that is, there exists a solution all of

whose initial segments also constitute solutions to their restricted marriage problems.
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Proof. It suffices to show that this is true for β = min(α, 1). Let us restrict our

attention to Matchk(α, α) with α ≤ 1.

Let ā be a request from Alice, ā = 〈a0, . . . , an〉. Let C1 be the set of all possible

responses c̄ from Bob such that ā S c̄; such a set C1 exists and is finite since entries of c̄

are in {0, 1, . . . , k}. For each c̄ ∈ C1, define a new vector z(c) given by z(ci) = |j ≤ i :

cj = 0|. In other words, z(c) is an increasing vector such that z(ci) gives the number

of unmatched boys up to boy i. Order the vectors z(c), c ∈ C1 in reverse lexicographic

order; so that z(c) ≺ z(c′) if and only if (∃i) (z(ci) < z(c′i) ∧ (∀j > i) z(cj) = z(c′j)).

This gives highest priority to responses that match the most boys; among these,

highest priority is to responses that match the most boys before the last boy, and so

on. Let d̄ be a (not necessarily unique) response such that (∀c̄ ∈ C1) z(d) � z(c).

I claim that d̄ is a solution to the closed kernel of Matchk(α, α). Let M be the

matching encoded by d̄, and recall that ā encodes the relation (B,G,R) with ai en-

coding the girls that boy i sees. Let i < n, and suppose that 〈a0, . . . , ai〉 S 〈d0, . . . , di〉

fails, so that if Bi = {0, . . . , , i}, |RBi| < α(i+ 1). Since (B,G,R) satisfies the α-Hall

condition, there does exist a matching Li of size at least α(i+1) for the set Bi. Modify

the original matching M to a new matching L as follows: (i)

(i) If (j, g) ∈ Li and (j′, g) ∈ M , then replace (j′, g) with (j, g) in L; (ii) If

(j, g) ∈ Li and j is not matched by M and also does not satisfy (i), then add (j, g)

to L. (iii) All other pairs in M remain in L. Then L is a valid matching with

|L| ≥ |M | ≥ α(n + 1). However, if ¯̀ is the vector of responses associated to L, then

z(`) ≺ z(d), since z(`i) < z(di) and z(`j) ≤ z(dj) for i ≤ j ≤ n. This contradicts the

choice of d̄. Therefore, d̄ is a solution to the closed kernel of Matchk(α, α).

Corollary 4.3.8 (RCA0). If α/(1 + α) < β ≤ min(1, α) and k < ω, then

SeqMatchk(α, β)↔ WKL0.
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Fujiwara and Yokoyama [12] showed that an unbounded sequential version of

Match(1, 1) is equivalent to ACA0 over RCA0. We show that the same is true of the

unbounded non-optimal case:

Theorem 4.3.9 (RCA0). Let α, β be positive rational numbers, and let α/(1 + α) <

β ≤ min(1, α). Then the following are equivalent:

(i) ACA0

(ii) The sequential unbounded matching problem with parameters α, β: Given a se-

quence 〈Bn, Gn, Rn〉n∈N, where Bn, Gn are finite sets and Rn ⊆ Bn × Gn, and

such that for all n ∈ N, 〈Bn, Gn, Rn〉 satisfies the α-Hall condition, there exists

a sequence of matchings 〈Mn〉n∈N such that for every n ∈ N, Mn is a matching

for 〈Bn, Gn, Rn〉 and |Mn| ≥ β|Bn|.

Proof. (i) ⇒ (ii) by the proof of Proposition 2.1.4.

(ii) ⇒ (i): Assume (ii). The witnessing example will be very similar to the one in

Theorem 4.3.5. As in that example, we choose d, e such that α/(1 + α) <
d

d+ e
< β,

which also implies that αe < d. Choose any k ≥ α(d+ e).

We define a sequence of finite relations 〈Bn, Gn, Rn〉n∈N. Let f : N → N be an

arbitrary injection; our goal is to prove the existence of the range of f , which will

imply ACA0.

Define Rn as follows: (i, j) ∈ Rn for all 0 ≤ i, j < d. If f(s) = n, then (i, d+ (k−

d)s), (i, d + (k − d)s + 1), . . . , (i, d + (k − d)s + (k − d)) ∈ Rn for all i < d, and also

(d+ s, j), (d+ 1 + s, j), . . . , (d+ e− 1 + s, j) ∈ Rn for all j < d.

Let 〈Mn〉n∈N be the matching guaranteed by (ii). By the same argument as in

Theorem 4.3.5, Rn satisfies the α-Hall condition. However, if n ∈ ran(f), then Mn

must match at least one of the first d boys to a girl higher than d. For the matching
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Figure 4.1: The optimal off-line solution (left) and on-line solution (right)

must have size at least (d+ e)β > d, which can only happen if one of the first d boys

is matched to a girl higher than d. In conclusion,

n ∈ ran(f) ↔ Rn({d, . . . , d+ e− 1}) ∩ {0, . . . , d− 1} 6= ∅

which we can check computably. So ran(f) exists, and ACA0 holds.

4.4 The Task Scheduling Problem

We now turn to the problem of scheduling a series of simultaneous tasks on k proces-

sors. Tasks of varying processing time are assigned to the scheduler, whose duty it is

to choose a machine for each task. The scheduler’s goal is to minimize the completion

time, also called the makespan, which is the total time required to complete all N

tasks. Of course, the scheduler has no knowledge of future tasks or their processing

times.

Not surprisingly, the scheduler cannot always guarantee the optimal completion

time. For example, if there are k = 3 processors, and the sequence of tasks have

processing times (1, 1, 1, 3, 3, 3, 6), the optimal processing time is 6, but if the

process stops before the final task, the optimal assignment is no longer optimal.

(This example was already introduced in Section 1.2; see Figure 4.1.)

Given an on-line scheduling algorithm, we are concerned with the competitive
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ratio, between the algorithm’s processing time and the optimal off-line processing

time. In Figure 4.1, any on-line algorithm would have competitive ratio at least 5/3.

Definition 4.4.1. Suppose that we have k processors, and there is a sequence of at

most N tasks to be completed. A function µ ⊆: N → [0,∞) defines the processing

time of each task. Suppose that g ⊆: N → k assigns one of the k processors to each

task, with dom g = domµ.

• We define the completion time of µ with respect to g, ω(µ, g), as follows:

ω(µ, g) = max
i<k

∑
t∈ g−1(i)

µ(t)

• We define the completion time of µ with respect to g after j tasks, ωj(µ, g):

ωj(µ, g) = max
i<k

∑
t∈ g−1(i), t≤j

µ(t)

• We define a new function z(µ) ⊆: N → [0,∞) as follows:

(z(µ))(j) = min{ωj(µ, σ) | σ : {0, . . . , j} → {0, . . . , k − 1} }

• We define OPT(µ) = supj (z(µ))(j).

• The competitive ratio of (µ, g), CR(µ, g), is defined as:

CR(µ, g) = sup
j

ωj(µ, g)

(z(µ))(j)

Intuitively, (z(µ))(j) gives the lowest possible processing time of tasks 0, . . . , j,

taken over all possible processor assignments of tasks 0 through j. Note that the
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vector z(µ) is uniformly computable from µ, but the quantities OPT(µ) and CR(µ, g)

in general are not, since they require knowing the exact domain sizes.

If we have a well-defined algorithm A that takes a sequence of processing times

and outputs a sequence of processors, then A(µ) is defined to be the completion time

of µ when applying the algorithm A. The competitive ratio of A, CR(A), is defined

to be the maximum ratio of A’s processing time to the optimal processing time, taken

over all possible processing times µ. More precisely:

Definition 4.4.2. Let A be a well-defined algorithm that takes as input a sequence

of tasks µ and outputs a processor assignment gA,µ.

• We define

A(µ) = ω(µ, gA,µ)

If we let OPT be the optimal off-line algorithm, then this definition of OPT(µ)

coincides with the definition above.

• Let A be a well-defined algorithm. The competitive ratio of A, CR(A), is defined

as:

CR(A) = sup
µ⊆:N→[0,∞)

A(µ)

OPT(µ)
= sup

µ⊆:N→[0,∞)

CR(µ, gA,µ)

An algorithm’s competitive ratio CR(A) is unlikely to be computable, as the

definition quantifies over all possible sequences of real task times.

In the following definition, we should view M as a set of sequences of processing

times µ, and we should view G as a set of sequences of processor assignments g.

Definition 4.4.3. Sch(N, k, α) is the problem P(M,G,R), where M = Q<N , G =

k<N , and µ̄ R ḡ holds if and only if

ωr(µ̄, ḡ) ≤ α · (z(µ̄))(r)
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where r = |µ|.

In other words, taking tasks given by µ and scheduling them according to g is

eventually at most α times the optimal processing time.

SeqSch(N, k, α) is defined in the usual way. It is easy to see that Sch(N, k, α) is

on-line solvable according to Definition 3.1.10 if and only if it is on-line solvable in

the intuitive sense.

Remark 4.4.4. Sch(N, k, α) implicitly argues the existence of an optimal algorithm,

but it cannot explicitly compute the optimal algorithm. This is why z(µ) is used in

Definition 4.4.3 rather than any reference to an actual optimal algorithm, including

the quantities OPT(µ) and CR(µ, g). When we consider SeqSch(N, k, α), the asserted

sequence of schedulings 〈ḡn〉n∈N cannot explicitly compute the sequence of optimal

schedulings, or even the sequence of cardinalities of 〈ḡn〉n∈N. Had Definition 4.4.3

referred to OPT(µ) rather than z(µ), this would not be the case, drastically altering

the reverse-mathematical strength of SeqSch(N, k, α).

The most naive on-line algorithm is to schedule each task on the machine with

the current lightest load. This algorithm is often called LOW in the literature [27].

Graham [14] showed that this algorithm has competitive ratio 2− 1
k

:

Theorem 4.4.5 (Graham). CR(LOW) = 2− 1
k
.

Corollary 4.4.6. Let N, k < ω.

• RCA0 ` SeqSch(N, k, 2− 1
k
).

• RCA0 ` (∀N)(∀k) SeqSch(N, k, 2).

Proof. Since the on-line LOW algorithm (which is easily formalized in second-order

arithmetic) witnesses that Sch(N, k, 2 − 1
k
) is on-line solvable, the corollary follows

from Theorems 3.2.2 and 4.4.5.

104



The example in Figure 1 showed that no possible on-line algorithm can have a

competitive ratio of 5/3. Another better, though not optimal, example is shown in

Faigle et al. [10].

Proposition 4.4.7 (RCA0). Let A be any on-line scheduling algorithm, and let OPT

be the optimal off-line scheduling algorithm. Given the sequence of processing times

µ = (1, 1, . . . , 1, 1 +
√

2, 1 +
√

2, . . . , 1 +
√

2, 2 + 2
√

2), with d iterations of both 1

and 1 +
√

2, we have

A(µ) ≥ (1 +
1√
2

)×OPT(µ).

Proof. In Figure 4.2, each column represents a processor, and the numbers in the

column represent processing times of tasks assigned to that processor. It is easy

to check that the top table is optimal, and that the bottom table follows the best

possible on-line algorithm. The competitive ratio is

4 + 3
√

2

2 + 2
√

2
= 1 +

1√
2
.

As the sequence is finite and all cases can be checked easily, RCA0 is sufficient to

prove this.

Note that 1 + 1√
2
≈ 1.707. Albers [1] has improved the lower bound to 1.852 for

k = ranµ a multiple of 40. She has also improved the upper bound by creating an

on-line algorithm with competitive ratio 1.923.

Theorem 4.4.8 (Albers).
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Figure 4.2: The optimal off-line solution (top) and on-line solution (bottom)

• There exists an on-line algorithm A such that CR(A) = 1.923.

• Let k be a multiple of 40. There exists a sequence of tasks µ ⊆: 4k + 1 → Q+

such that for any task assignment g : 4k + 1→ k, we have CR(µ, g) ≥ 1.852.

So the best competitive ratio for an on-line scheduling algorithm is a currently

unknown α ∈ (1.852, 1.923]. In the special case of four machines, Rudin [31] has

improved the lower bound to 1.88. (These decimals are exact.)

Theorem 4.4.9 (RCA0). Let α ≥ 1.923, α ∈ Q, and let n, k ∈ N. Then SeqSch(N, k, α)

holds.

Proof. This follows from Theorems 3.2.2 and 4.4.8. The latter has to be modified to

be definable in second-order arithmetic: There exists an algorithm A such that for

any N, k ∈ N, A will take as input a sequence of processing times µ ⊆: N → Q+ and

will output a sequence of processors gA,µ ⊆: N → k as described in Definition 4.4.2.

For any such µ, we have CR(µ, gA,µ) ≤ 1.923. Albers’s proof in [1] is multi-step but

straightforward, and can be carried out using Π0
1-induction.
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Theorem 4.4.10 (RCA0 + IΣ0
2). Let α < 1 + 1√

2
, α ∈ Q, k ∈ N. Then SeqSch(2k +

1, k, α)→ ACA0.

Proof. We will show that the example in Proposition 4.4.7, illustrated in Figure 4.2,

does not have a solvable closed kernel; the statement then follows from Proposition

4.4.7 and Theorem 3.3.14. It is clear that the optimal solution does not have a closed

kernel (at the stage when only the 1’s are entered, the competitive ratio of the initial

segment is 2). We have to be careful, though; there are other solutions that are not

optimal, but do have competitive ratio < 1 + 1√
2
≈ 1.707.

First, note that any solution that assigns any two of the 1’s to the same processor

has an initial segment that is not a solution, for the exact reason stated above. The

other two sensible possibilities are illustrated in Figure 4.3. The top table in the

figure has a processing time of 4 + 3
√

2, just like the non-solution in Figure 4.2 with

that processing time, and is therefore also not a solution. The bottom table in the

figure has a processing time of 3 + 2
√

2 and therefore has competitive ratio

3 + 2
√

2

2 + 2
√

2
=

1

2
+

1√
2
≈ 1.207

So it is indeed a solution. However, at the second-last stage, the optimal processing

time is 2 +
√

2, giving a competitive ratio of

3 + 2
√

2

2 +
√

2
= 1 +

1√
2
≈ 1.707

Therefore, there are one optimal solution and one non-optimal solution (modulo

permuting the processors with one another), both of which fail to be solutions at

some initial segment. So Sch(2k+ 1, k, α) does not have a solvable closed kernel, and

so SeqSch(2k + 1, k, α)→ ACA0.
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Figure 4.3: Two other possible processor assignments. The top one is not a solution;
the bottom one is a non-optimal solution.

Observe that the two solutions fail at different initial segments. If we let ā be the

sequence of processing times, b̄1 the assignment in the optimal solution, and b̄2 the

assignment in the non-optimal solution in Figure 4.3, notice that (ā � 4) R (b̄1 � 4)

holds but (ā � 8) R (b̄1 � 8) fails; by contrast, (ā � 4) R (b̄2 � 4) fails but (ā � 8) R

(b̄2 � 8) holds.

Can the sequential problem be equivalent to WKL0 in any case? Or is there a

dividing line for α that directly separates RCA0 from ACA0? The equivalent question

would be if Alice can always win by playing one particular sequence of numbers, or if

she simply has a strategy that depends on Bob’s placements, as in the graph coloring

problem?

Condition 4.4.11. Let α ≥ 1, N, k ∈ N. UniformWin(N, k, α) is the condition that

Alice has a particular winning play ā that will defeat any processor assignment b̄

from Bob at some initial segment of the problem; that is, (ā � j) R (b̄ � j) fails for

some j < N . In other words, ā is a winning play for Alice in the closed kernel of

Sch(N, k, α).
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Conjecture 4.4.12 (RCA0). Let α ≥ 1, N, k ∈ N. Suppose that Sch(N, k, α) is not

on-line solvable. Then UniformWin(N, k, α) holds. Moreover, the processing times in

Alice’s winning play are in nondecreasing order: a0 ≤ a1 ≤ · · · ≤ aN−1.

The example in Proposition 4.4.10 clearly witnesses the conjecture for α = 1+ 1√
2
,

and the conjecture is true in many lower-bound counterexamples in the literature,

such as those in [1] (see Theorem 4.1) and [31] (see the table in Example 7). It seems

nontrivial, for changing consecutive processing times from say (20, 10) to (10, 20) can

open up new moves for Bob, if a placement option for the 20 becomes possible when

it no longer exceeds α times the optimum, which can change when the 10 is played.

Proposition 4.4.13 (RCA0). Let α ≥ 1, α ∈ Q, N, k ∈ N be parameters satisfying

UniformWin(N, k, α). Then the closed kernel of Sch(N, k, α) is not solvable.

Proof. Let ā be Alice’s uniformly winning play in the closed kernel of Sch(N, k, α)

from Condition 4.4.11, and let b̄ be a response from Bob that is a winning play

in Sch(N, k, α) (not in its closed kernel). Since ā will defeat all possible processor

assignments including Bob’s b̄, it must be that (ā � j) R (b̄ � j) for some j < N .

Theorem 4.4.14 (RCA0 + IΣ0
2). Let α ≥ 1, α ∈ Q, N, k ∈ N. Suppose that

UniformWin(N, k, α) holds. Then SeqSch(N, k, α)↔ ACA0.

Proof. This follows from Theorem 3.3.14 and Proposition 4.4.13.

Corollary 4.4.15 (RCA0 + IΣ0
2). Let k be a positive multiple of 40 and let α ≤ 1.852.

Then SeqSch(4k + 1, k, α)↔ ACA0.

Proof. This follows from Theorem 4.4.8 and Theorem 4.4.14; the former depends on

Albers’s work in [1] which is straightforward and provable in RCA0.
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4.5 The Paging Problem

In this problem, we work with a memory system with two levels: a fast memory and

a slow memory, with the fast memory having a fixed size k. Pages in the memory

system will be requested, and our goal is to optimize the process so that, as often as

possible, the requests are already in the fast memory.

We follow the terminology in [3]. The memory system receives a sequence of up

to N page requests. If the requested page is in the fast memory, no cost incurs. If

the requested page is in the slow memory, we move the requested page into the fast

memory, and we move another page from the fast memory into the slow memory. In

this case we have a “page fault” with cost 1.

We will let µ : N → N denote the sequence of page requests, and we will let

g : N → k denote the sequence of assigned fast memory cells, so that for j < N , page

µ(j) ∈ N gets assigned fast memory cell g(j) < k.

The following definition formalizes some intuitive concepts from this problem.

Definition 4.5.1.

• Let µ ⊆: N → N, and let g ⊆ N → k, with domµ = dom g. At the time of a

request µ(i), we say that page m is the last occupant of cell j in the fast memory

if for the greatest i′ < i such that g(i′) = j, we have µ(i′) = m.

• If m is the last occupant of some cell j, we say that m is in the fast memory at

the time of request µ(i).

• We say that g is a proper assignment if
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– If µ(i) = m with m the last occupant of cell j in the fast memory, then

g(i) = j as well. (In particular, g never assigns a page m to two distinct

cells in the fast memory at any particular time.)

– If there are cells in the fast memory that are empty at the time of request

µ(i), then g(i) will choose one of these cells.

If µ(i) = m for some m not already in the fast memory, and if the fast memory is

full at time i, then we incur a page fault with cost 1.

Definition 4.5.2. The cost C(µ, g) is defined as

C(µ, g) =
∣∣ i < N : all cells j < k are occupied by pages other than µ(i) at time i

∣∣
We can also define

Ci(µ, g) =
∣∣ i′ < i : all cells j < k are occupied by pages other than µ(i′) at time i′

∣∣
Note that C(µ, g) is uniformly computable from µ and g.

Definition 4.5.3. If A is a well-definied algorithm that takes as input a sequence of

page requests µ and outputs a sequence of assigned memory cells gA,µ, then we define

A(µ) = C(µ, gA,µ)

.

Just as in Section 4.4, we create a new function z(µ) that essentially means “op-

timal cost so far”; see Remark 4.4.4 for the necessity of this concept.
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Definition 4.5.4. We define z(µ) ⊆: N → N as follows:

(z(µ))(j) = min{C(µ�j, σ) | σ : {0, . . . , j} → {0, . . . , k − 1} }

Sleator and Tarjan [37] observe that the optimal off-line algorithm OPT uses the

“Longest Forward Distance” algorithm: Always displace the page whose next access

is latest. This is clearly the unique optimal algorithm.

The best on-line algorithm is LRU (Least Recently Used), where we always dis-

place the least recently used page in the fast memory. Sleator and Tarjan show that

LRU has a competitive ratio of k.

Theorem 4.5.5 (Sleator-Tarjan). Let µ be any request function, µ ⊆ N → N. Then

LRU(µ) ≤ k ×OPT(µ) + k.

Proposition 4.5.6 (Sleator-Tarjan). Let A be any on-line algorithm. Then there are

arbitrarily long request functions µ such that A(µ) ≥ k ×OPT(µ).

Proof. First request k pages to fill up the fast memory, which costs nothing. Then

request 1 page not in the fast memory. Then, for the next k − 1 requests, request

the exact page that you just displaced from the fast memory. Repeat this procedure

as often as you want, say d times. A will fault every single time, kd times. However,

OPT will fault at most d times, since when it does fault, it knows that at least one

of the k pages in fast memory will not be requested in the next k − 1 requests, so it

will know to displace that page. So A(µ) = kd ≥ k ×OPT(µ).

Here is the formal definition of a request sequence µ : N → N that will work:

• For 0 ≤ i ≤ k − 1, µ(i) = i.

• For i ≥ k, i = kt, we define µ(i) = kt.
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• For i ≥ k, i = kt + r, r 6= 0, we define µ(i) = m, where m is the last occupant

of cell j of the fast memory, where gA,µ(i− 1) = j.

Definition 4.5.7. Let N, k ∈ N, α ∈ Q. Page(N, k, α) is the problem (M,G,R),

where M = N<N , G = k<N , and µ̄ R ḡ holds if and only if ḡ is a proper assignment

and if

Cr(µ̄, ḡ) ≤ α · (z(µ̄))(r) + k

where r = |µ|.

SeqPage(N, k, α) is defined in the usual way.

Proposition 4.5.8. Let N, k ∈ N, α ≥ k. Then RCA0 ` SeqPage(N, k, α).

Proof. By Theorem 4.5.5, the LRU on-line algorithm has the property that

C(µ, gLRU, µ) ≤ k ∗OPT(µ) +k. Since the LRU algorithm is easily definable in RCA0,

Theorem 3.2.2 implies that RCA0 proves the sequential version.

Proposition 4.5.9 (RCA0). Let N, k ∈ N, α ≥ 1. Then Page(N, k, α) has a solvable

closed kernel.

Proof. Page(N, k, 1) is clearly solvable by taking ḡ to be the optimal assignment, and

following our definition of Page(N, k, α), every initial segment of the optimal solution

is a solution.

Corollary 4.5.10 (RCA0). Let N, k ∈ N, α ≥ 1. Then WKL0 ` SeqPage(N, k, α).

Proof. The problem is semi-bounded; apply Theorem 3.3.2 and Proposition 4.5.9.
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Proposition 4.5.11 (RCA0). Let d, k ∈ N, 1 ≤ α < k. Then Page(dk, k, α) is not

on-line solvable.

Proof. This follows from Proposition 4.5.6.

Corollary 4.5.12 (RCA0). Let d, k ∈ N, 1 ≤ α < k, dk < ω. Then SeqPage(dk, k, α) `

WKL0.

Proof. This follows from Corollary 3.2.6 and Proposition 4.5.11.

4.6 The List Update Problem

In the List Update problem, we maintain a permutation σ of the numbers 1 through

k. We receive a series of requests for numbers in {1, . . . , k}. The cost of the request

is the index of that number in the permutation σ, ı.e., the distance from the left you

have to walk to get to that number. Once the number is requested, we can assign it

any space in the permutation that we wish, keeping the other numbers in the same

order.

The optimal off-line algorithm, which we will call OPT, is to initially order the

numbers in the order they will first be requested, and then once a number is requested,

place it after all other numbers that will be requested before it. OPT has cost N , the

total number of requests, since the requested number will always be at the beginning

of the permutation.

For any on-line algorithm, there is a worst-case scenario where the algorithm

incurs the maximum possible cost of Nk. Namely, whichever number is last in the
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permutation is always the next number requested. So if α < 1, no on-line algorithm

can guarantee a cost as low as Nkα.

We will let µ ⊆: N → k denote a sequence of up to N fetch requests, and we will

let g : {−k, . . . ,−1} ∪ (domµ) → k denote the sequence of assigned spaces. So µ(i)

denotes the number requested in step i, and g(i) denotes the space assigned to µ(i),

for i ≥ 0. g(−j) denotes the initial space of the number j − 1, 1 ≤ j ≤ k.

We can easily keep track of the full permutation after each request: We will define

a sequence of permutations σ : ({−1} ∪ domµ) × k → k, so that σ(i, j) represents

the number in space j after the request µ(i), and σ(−1, ) is the initial permuation.

At the same time we will define a cost c : domµ → k, such that the number µ(i) is

in space c(i) before it is requested. Both σ and c will be uniformly computable from

µ and g, and will be defined recursively by:

• σ(−1, j − 1) = g(−j); (We have an initial permutation)

• c(i) is the previously assigned space of the request µ(i), so that σ(i− 1, c(i)) =

µ(i). (The cost of the request is how far you have to walk).

• σ(i, g(i)) = µ(i); (Move the request to its assigned space.)

• σ(i, j) = σ(i− 1, j − 1) if g(i) < j ≤ c(i) (If the request is moved left, interme-

diate elements are moved right).

• σ(i, j) = σ(i − 1, j + 1) if c(i) ≤ j < g(i) (If the request is moved right,

intermediate elements are moved left).

• σ(i, j) = σ(i− 1, j) for all other j.

Note that c(i) is defined in terms of σ(i − 1, ), and that σ(i, ) is defined in

terms of c(i).
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Definition 4.6.1. Let N, k ∈ N, α ∈ Q. LU(N, k, α) is the problem (M,G,R), where

M = G = k<N and µ̄ R ḡ holds if and only if

∑
i<|µ|

c(i) ≤ α · |µ|

SeqLU(N, k, α) is defined in the usual way. The extra function z from the previous

two sections is not necessary here, since we explicitly know the cost of OPT.

Proposition 4.6.2. Let N, k < ω, α ≥ k. Then RCA0 ` SeqLU(N, k, α).

Proof. This is clear, since α = k is the worst-case scenario; see the explanation in the

first paragraphs of this section.

Proposition 4.6.3 (RCA0). Let N, k ∈ N, α ≥ 1. Then LU(N, k, α) has a solvable

closed kernel.

Proof. LU(N, k, 1) is clearly solvable by taking ḡ to be the optimal assignment, and

following our definition of LU(N, k, α), every initial segment of the optimal solution

is a solution.

Corollary 4.6.4 (RCA0). Let N, k ∈ N, α ≥ 1. Then WKL0 ` SeqLU(N, k, α).

Proof. The problem is bounded; apply Theorem 3.3.2 and Proposition 4.6.3.

Proposition 4.6.5 (RCA0). Let N, k ∈ N, 1 ≤ α < k. Then LU(N, k, α) is not

on-line solvable.

Proof. See the explanation in the opening paragraphs of this section.
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Corollary 4.6.6. Let N, k < ω, 1 ≤ α < k. Then SeqLU(N, k, α) ` WKL0.

Proof. This follows from Corollary 3.2.6 and Proposition 4.6.5.

Essentially, on-line list update algorithms can never beat the worst case scenario.

Sleator and Tarjan [37] analyze the naive “Move To Front” (MTF) algorithm that

moves the requested number to the front. They show that, if we do not allow either

algorithm to choose the initial permutation, then MTF has a competitive ratio of 2.

(Example: It is relatively easy to see that in the worst case scenario when N = k,

MTF incurs a cost of k2, but OPT incurs a cost of
(
k
2

)
, an approximate ratio of 2.)

4.7 Dilworth’s Theorems

A partial order P = (V,≤) is a reflexive, antisymmetric, transitive relation ≤ on the

set V . We will refer to V as the set of vertices of P . A chain C is a subset C ⊆ P

that is totally ordered with respect to ≤, ı.e., (∀c1, c2 ∈ C) [(c1 ≤ c2) ∨ (c2 ≤ c1)].

An antichain A is a subset A ⊆ P such that no two elements of A are comparable,

ı.e.,

(∀a1, a2 ∈ A) [(a1 6= a2) → (¬(a1 ≤ a2) ∧ ¬(a2 ≤ a1))].

If the largest antichain in P has size k, then we say the width of P is k. If the

largest chain in P has size m, then we say the height of P is m.

Dilworth’s Theorem states that if a partial order P = (V,≤) has width bounded

by k, then there exists a set of k chains that cover P . Cenzer and Remmel [5] prove

that Dilworth’s Theorem is equivalent to WKL0 for infinite partial orders. Since a

sequence of finite partial orders 〈Pn〉n∈N = 〈Vn, ≤n〉n∈N of width ≤ k can be combined

into an infinite partial order of width ≤ k — just make the entire Vn < Vn′ whenever
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n < n′ — it follows that WKL0 implies the sequential Dilworth’s theorem. We will

see that the two are equivalent.

Definition 4.7.1. Let k ≥ 2. Dilworth(k) is the problem (A,B,R), where A = N<∞,

B = k<∞. (ā R b̄) is true if the following holds: If ai < 3i, and if by using the ternary

representation of ai to determine comparability of vertex i with vertices 0, . . . , i− 1,

this results in a valid partial ordering ≤ with width at most k, then assigning vertices

values in {0, 1, . . . , k − 1} according to b̄ results in k chains. That is, if bi = bi′ , then

(i, i′) ∈≤ or (i′, i) ∈≤.

SeqDilworth(k) is defined in the usual way.

Proposition 4.7.2. Let k ≥ 2. Then the closed kernel of Dilworth(k) is solvable.

Proof. The finite problem is clearly solvable. Any initial segment of a solution clearly

will encode a partial order with at most k chains as well. (The transitivity guaran-

tees that if v1 < v3 < v2, then the relation v1 < v2 already existed before v3 was

introduced.)

Corollary 4.7.3. Let k ≥ 2. Then WKL0 ` SeqDilworth(k).

Proof. The problem is semi-bounded. Apply Theorem 3.3.2 and Proposition 4.7.2.

The problem is, in fact, equivalent to a bounded problem, in which A consists of

finite sequences ā satisfying ai < 3i.

Theorem 4.7.4. Let k ≥ 2. Then Dilworth(k) is not on-line solvable.

Proof. The partial order we will create is shown in Figure 4.4. In this order, we always

have 0 < k, 1 < k+ 1, 2 < k+ 2, . . . , k− 1 < 2k− 1, as well as 0 < k+ 1, 1 < k. No
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k

1

k+1

2

k+2

3

k+3

· · ·

k-1

2k-12k?

2k?

Figure 4.4: Partial order in the proof of Theorem 4.7.4. If there is a down-to-up path
from v1 to v2 in this picture, then v1 < v2.

other relations hold among vertices 0, . . . , 2k − 1. Recall that Alice will enumerate

vertices in numerical order, and when she enumerates a vertex, she will list all order

relations of that vertex with previous vertices. This means that Bob has very little

freedom in assigning chains. In fact, he only has one choice: when k is enumerated,

he can assign it to the same chain as 0 or as 1. Then k+ 1 will be assigned the other

chain.

Alice can then define vertex 2k based on Bob’s choice of chains. If Bob assigns 0,

k to the same chain, Alice will choose 0 < 2k < k + 1, and Bob will not be able to

correctly assign a chain to vertex 2k. If Bob assigns 0, k + 1 to the same chain, then

Alice will choose 0 < 2k < k, and Bob will similarly be defeated.

.

Corollary 4.7.5 (RCA0). Let 2 ≤ k < ω. Then SeqDilworth(k) ` WKL0 and

SeqDilworth(k)↔ WKL0.

Proof. This follows from Corollary 3.2.6 and Theorem 4.7.4.
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The Dual to Dilworth’s Theorem states that if a partial order P = (V,≤) has

height bounded by m, then there exists a set of m antichains that cover P . Like

Dilworth’s Theorem, Cenzer and Remmel [5] prove that the dual theorem for infinite

partial orders is equivalent to WKL0.

Definition 4.7.6. Let m ≥ 2. DualDilworth(m) is the problem (A,B,R), where

A = N<∞, B = m<∞. (ā R b̄) is true if the following holds: If ai < 3i, and if by using

the ternary representation of ai to determine comparability of vertex i with vertices

0, . . . , i − 1, this results in a valid partial ordering ≤ with height at most m, then

assigning vertices values in {0, 1, . . . ,m − 1} according to b̄ results in m antichains.

That is, if bi = bi′ , then (i, i′) /∈≤ and (i′, i) /∈≤.

SeqDualDilworth(m) is defined in the usual way.

Proposition 4.7.7. Let m ≥ 2. Then the closed kernel of DualDilworth(m) is solv-

able.

Proof. The finite problem is clearly solvable. Any initial segment of a solution clearly

will encode a partial order with at most m antichains as well.

Corollary 4.7.8. Let m ≥ 2. Then WKL0 ` SeqDualDilworth(m).

Proof. The problem is semi-bounded (in fact, equivalent to a bounded problem).

Apply Theorem 3.3.2 and Proposition 4.7.7.

Theorem 4.7.9. Let m ≥ 2. Then DualDilworth(m) is not on-line solvable.

Proof. The partial order we will create is shown in Figure 4.5. In this order, we

always have 0 < 2, 0 < 3, 1 < 3, 1 < 4, 2 < 3, 2 < 4, 3 < 5, 3 < 6, 4 < 5, 4 <
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Figure 4.5: Partial order in the proof of Theorem 4.7.9. If there is a left-to-right path
from v1 to v2 in this picture, then v1 < v2. In this order, 0 < 3 and 1 < 4 always.

6, . . . , 2m− 5 < 2m− 3, 2m− 5 < 2m− 2, 2m− 4 < 2m− 3, 2m− 4 < 2m− 2, plus

all transitive closures.

Recall that Alice will enumerate vertices in numerical order, and when she enu-

merates a vertex, she will list all order relations of that vertex with previous vertices.

This means that Bob has very little freedom in assigning antichains. In fact, he only

has one choice: when 1 is enumerated, he can assign it to the same antichain as 0 or

to a different one. If he chooses the latter, he must choose 2 to belong to the same

antichain as 1; otherwise his constraints will guarantee a width of m+ 1 and he will

lose. So in short, Bob has two plays that will keep him in the game up through vertex

2m − 2: either 0 is in its own antichain and 1 and 2 share one, or 2 is in its own

antichain and 0 and 1 share one.

Alice can then define vertex 2m − 1 based on Bob’s choice of antichains. If Bob

assigns 1, 2 to the same antichain, Alice will choose 2m − 1 < 0 and 2m − 1 < 1

plus the transitive closures, and Bob will not be able to correctly assign an antichain

to vertex 2m − 1. If Bob assigns 0, 1 to the same antichain, then Alice will choose

0 < 2m − 1 < 3 and 1 < 2m − 1 < 4 plus the transitive closures, and Bob will

similarly be defeated. Note that in either case, the height of the partial order is still

m.
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.

Corollary 4.7.10 (RCA0). Let 2 ≤ m < ω. Then SeqDualDilworth(m) ` WKL0 and

SeqDualDilworth(m)↔ WKL0.

Proof. This follows from Corollary 3.2.6 and Theorem 4.7.9.

Remark 4.7.11. Note that in both Theorem 4.7.4 and in Theorem 4.7.9, the proofs

would be identical if we only had the comparability graphs rather than the full re-

lations ≤. Also, both proofs would work if we assumed the partial orders had to be

connected: in Theorem 4.7.9 the partial order we constructed was connected, and in

Theorem 4.7.4 we could easily make the order connected by adding diagonal relations

1 < k+ 2, 2 < k+ 3, . . . , k− 2 < 2k− 1, and this would not change the assignments

of chains.

4.8 Ramsey’s Theorem

Given a set A ⊆ N and n ∈ N, let [A]n denote the collection of subsets of A of size n.

Let k ≥ 2 be a number of colors. Our version of the finite Ramsey’s Theorem for

n-tuples states that for every finite set of vertices V , there exists a finite superset of

vertices W ⊇ V , such that for any coloring g : [W ]n → k, there is a homogeneous set

H of size |V |:

(|H| = |V |) ∧ (H ⊆ W ) ∧ (∃c < k)(ran g � [H]n = {c})

Let us work for the moment with pairs (n = 2) and two colors (k = 2). Since

various results in finite combinatorics ensure that if |V | = r, we may take |W | ≤
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(
2r−2
r−1

)
, as we formulate the finite Ramsey problem as a two-player game, it is not the

sizes |V | and |W | Alice and Bob will be playing, but rather Alice will play a coloring

g, and Bob will play a particular homogeneous set H.

Definition 4.8.1. FinRam(2, 2) is the problem (A,B,R) where A = B = N<N, and

ā R b̄ if, when ā has length r and the elements of ā encode a coloring g : K(Wr)→ 2

of the complete graph on Wr =
{

0, . . . ,
(

2r−2
r−1

)
− 1
}

, then b̄ encodes a subset H ⊆ W ,

with |H| = r that is homogeneous with respect to g; ı.e., ran g � K(H) = {c} for

some color c < 2.

The encoding of g is a length-r vector where coordinate i < r encodes a coloring

of K(Wi+1)\K(Wi). This encoding ensures that the problem is bounded as well as

solvable.

SeqFinRam(2, 2) is defined in the usual way. We will see that SeqFinRam(2, 2)

is equivalent to ACA0. The reader should not confuse this principle with RT2
2, the

infinite Ramsey’s Theorem for Pairs, which is famously incomparable with WKL0

as described in Section 1.1. We are considering the sequential version of the finite

Ramsey’s theorem. In fact, this is one of the easiest applications to analyze, since the

closed kernel is never solvable.

Theorem 4.8.2. FinRam(2, 2) does not have a solvable closed kernel.

Proof. Define ā by:

a0 = ∅

a1 = {((0, 1), blue)}

a2 = {((i, j), red) : 0 ≤ i < j ≤ 5, (i, j) 6= (0, 1)}

Note that a0 = K({0}), a0∪a1 = K({0, 1}), and a0∪a1∪a2 = K({0, 1, 2, 3, 4, 5}),
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and the sizes of the respective setsW1, W2, W3 are
(

2(1)−2
1−1

)
= 1,

(
2(2)−2

2−1

)
= 2,

(
2(3)−2

3−1

)
=

6.

Suppose that b̄ is a vector of length 3 that gives a homogeneous set. Then the

possible choices for b̄ are 〈2, 3, 4〉, 〈2, 3, 5〉, 〈2, 4, 5〉, 〈3, 4, 5〉. However, for ā � 2, the

only possible response from Bob is b̄ = 〈0, 1〉, which is not an initial segment of any

of his four possible choices.

Corollary 4.8.3 (RCA0). SeqFinRam(2, 2)↔ ACA0.

Proof. This follows from Proposition 3.3.3 and Theorem 4.8.2.

Since the finite Ramsey’s Theorem for k > 2 and/or for n-tuples n > 2 easily

implies the finite Ramsey’s Theorem for pairs on 2 colors, we can conclude that

SeqFinRam(n, k) ↔ ACA0 for any n, k ≥ 2. The precise formulation of the problem

must be modified, particularly the bounds. The proof, however, is near-identical, just

with different bounds involved, and with [Wr]
n replacing K(Wr).

4.9 Separating Sets

WKL0 is well known to be equivalent to Σ0
1-separation, which states: “Given two

injections f, g with disjoint ranges, there exists a separating set X such that ran

f ⊆ X and

ran g ⊆ (N − X).” In this section we consider the problem of finding a separating

set for two finite functions, and the related sequential problem.

Proposition 4.9.1. The following are equivalent over RCA0:

(i) ACA0
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(ii) Let 〈fn, gn〉n∈N be a sequence of pairs of functions, both of whose domains are

finite, and whose ranges are disjoint. Then there is a sequence 〈Xn〉n∈N of finite

separating sets such that ∀n (ran fn ⊆ Xn ∧ ran gn ⊆ N−Xn).

Proof. (i) ⇒ (ii) by Proposition 2.1.4. Assume (ii), and let A be an oracle. We will

show that the halting set relative to A exists, implying ACA0.

Define 〈fn〉n∈N as follows: f(0) = 0. If a > 0, then if there is s in the interval

ba
2
c ≤ s ≤ a − 1 such that ΦA

n (n) ↓ [s] for the first time, then a ∈ dom fn and

fn(a) = a − s + 1. We define 〈gn〉n∈N as follows: gn(0) = 1, and if a is such that if

s = ba
2
c − 1, and ΦA

n (n) ↓ [s] for the first time, then define gn(a) = a− s+ 1.

For instance, if ΦA
n (n) halts for the first time at stage 5, then we have fn(0) =

0, fn(6) = 2, fn(7) = 3, fn(8) = 4, fn(9) = 5, fn(10) = 6, fn(11) = 7, and we have

gn(0) = 1, gn(12) = 8. It is easy to see that if ΦA
n (n) halts for the first time at stage s,

then the range of fn will be {0, 2, 3, . . . , s+ 2}, and the range of gn will be {1, s+ 3}.

By (ii), there is a sequence 〈Xn〉n∈N of finite sets separating the ranges of fn, gn.

To test whether ΦA
n (n) halts, find the smallest integer j > 1 not in Xn. (We are

given that Xn is finite, so this is possible.) If ΦA
n (n) does not halt at some stage

s, 0 ≤ s < j, then ΦA
n (n) does not halt. Thus we can compute the Turing jump A′,

implying ACA0.

In the above proof, there is no uniform bound on the domains of the functions fn,

nor is there a uniform bound on the size of their domains. If we bound the size of

the domains of fn and gn, it gets a bit more interesting.

Unlike in the rest of this chapter, we will formulate these sequential problems

directly rather than using the language of Chapter 3. The semi-bounded condition is

problematic, as it is hard to put any kind of bound on the separating sets.
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Definition 4.9.2. SBSS (Sequential Bounded Separating Sets) is the following state-

ment: Let 〈fn, gn〉n∈N be a sequence of pairs of functions such that

∃b∀n (| dom fn| ≤ b ∧ | dom gn| ≤ b ∧ (ran fn ∩ ran gn = ∅)).

Then there is a sequence 〈Xn〉n∈N of finite separating sets such that

∀n (ran fn ⊆ Xn ∧ ran gn ⊆ N−Xn).

Definition 4.9.3. SBCS (Sequential Bounded Containing Sets) is the following state-

ment: Let 〈fn〉n∈N be a sequence of functions such that ∃b ∀n (| dom fn| ≤ b). Then

there is a sequence 〈Xn〉n∈N of finite containing sets such that ∀n (ran fn ⊆ Xn).

Definition 4.9.4. SBCS′ is SBCS together with the conclusion that |Xn| ≤ b for all

n.

Clearly both SBSS and SBCS′ imply SBCS.

In all definitions above it is the cardinalities of the domains that are bounded.

If we were simply bounding the domains, all three statements would easily have

constructive proofs in RCA0.

Proposition 4.9.5 (RCA0). SBSS ` WKL0.

Proof. Assume SBSS. We will prove Σ0
1 separation, which implies WKL0. Let f, g be

two injections with disjoint ranges. Define 〈fn, gn〉n∈N as follows: fn(0) = 0, and if

there exists k > 0 with f(k) = n, then fn(k + 1) = 2. gn(0) = 1, and if there exists

k > 0 with g(k) = n, then gn(k + 1) = 2.

Note that both f , g have domains of size either 1 or 2, and since f, g have disjoint

ranges, we will never have both 2 ∈ ran fn and 2 ∈ ran gn. So the hypotheses of
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SBSS are satisfied. Let 〈Xn〉n∈N be the guaranteed sequence of finite separating sets.

Define a function h : N→ N by h(n) = 1 if 2 ∈ Xn, and h(n) = 0 if 2 /∈ Xn. Then if

n ∈ ran f, h(n) = 1, and if n ∈ ran g, h(n) = 0. So h separates the ranges of f and g.

Proposition 4.9.6 (RCA0). The following are equivalent:

(i) WKL0

(ii) If f : N→ 2 is partial computable, then f has a total extension.

(iii) Let 〈fn〉n∈N be a sequence of functions such that ∀n (| dom fn| ≤ 1). Then there

is a sequence 〈Xn〉n∈N of sets with ∀n (|Xn| ≤ 1 ∧ ran fn ⊆ Xn).

Proof. (i) ⇔ (ii) is well known and very straightforward to prove.

(ii) ⇒ (iii): Let 〈fn〉n∈N be given as in (iii). Define a partial computable function

g ⊆: N2 → N as follows:

g(n,m) =


1 if ∃k (fn(k) = m)

0 if ∃k ∃m′ (m 6= m′ ∧ fn(k) = m′)

Let h : N2 → N be a total extension of g. Define

Xn = {m : h(n,m) = 1 ∧ (∀k < m)h(n, k) = 0 }

Then 〈Xn〉n∈N is our desired sequence for statement (iii).

(iii) ⇒ (ii): Let f : N → 2 be partial computable. Define fn := f |{n}, so that

| dom fn| ≤ 1. Let 〈Xn〉 be the sequence of containing sets guaranteed by (iii). Then

define g by g(n) = 1 if 1 ∈ Xn; g(m) = 0 if 0 ∈ Xn; g(n) = 1 otherwise; then g is a

total extension of f .
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Proposition 4.9.7 (RCA0). SBCS′ ↔ WKL0.

Proof. Statement (iii) in Proposition 4.9.6 is just SBCS′ for b = 1. Therefore, SBCS′

implies (iii) which implies WKL0.

Now assume WKL0, and we will prove SBCS′. Let 〈fn〉n∈N be a sequence of func-

tions whose domains have size at most b. For each n ∈ N, we inductively define h
(i)
n ,

1 ≤ i ≤ b, and sets X
(i)
n , 1 ≤ i ≤ b, as follows: We define

h
(i)
n (k) = m ⇔ fn(k) = m ∧ (∀i′ < i)m /∈ X(i′)

n

∧ (∀(k′,m′) < (k,m))
[

(∀i′ < i)(m′ /∈ X(i′)
n ) → fn(k′) 6= m′

]
It is clear from our definition that ∀i (| domh

(i)
n | ≤ 1). Therefore, by (i) ⇒ (iii) in

Proposition 4.9.6, there exists a sequence of sets 〈X(i)
n 〉n∈N of sets with ∀n (|X(i)

n | ≤ 1 ∧

ranh
(i)
n ⊆ X

(i)
n ). We then use X

(i)
n to define h

(i+1)
n and so on. Let Xn = X

(1)
n ∪· · ·∪X(b)

n .

Then we have |Xn| ≤ b and ran fn ⊆ Xn, as desired.

Proposition 4.9.8 (RCA0). WKL0 ` SBSS.

Proof. Assume WKL0. Then by Proposition 4.9.7, SBCS′ also holds. Let 〈fn, gn〉n∈N

be sequences of functions with | dom fn| ≤ b, | dom gn| ≤ b, and ran fn ∩ ran gn = ∅

for all n, as in the hypothesis of SBSS. Let 〈Xn〉n∈N be the finite containing sets for

〈fn〉n∈N guaranteed by SBCS′, so that ran fn ⊆ Xn.

Define a partial function h ⊆: N2 → 2 by: h(n,m) = 0 if m /∈ Xn; h(n,m) = 0

if m ∈ Xn and ∃k(gn(k) = m); h(n,m) = 1 if m ∈ Xn and ∃k(fn(k) = m). Let

j : N2 → 2 be a total extension of h; this is guaranteed by the (i) ⇒ (ii) implication

in Proposition 4.9.6. Define a sequence of separating sets 〈Yn〉n∈N by m ∈ Yn ⇔
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j(n,m) = 1. Note that ran fn ⊆ Yn ⊆ Xn\(ran gn), meaning that in particular Yn is

finite since Xn is finite. So 〈Yn〉n∈N is our desired sequence of separating sets.

Corollary 4.9.9 (RCA0). WKL0 ↔ SBSS↔ SBCS′ → SBCS.

Therefore, WKL0 ` SBCS, but there is still the possibility that the implication

is strict. If so, SBCS would be the only sequential problem considered in this thesis

whose strength is not equivalent to one of RCA0,WKL0, or ACA0. This does not

contradict all of the classification work from Chapter 3, since this formulation of the

problem is not semi-bounded (unlike SBCS′). The statement is certainly not provable

in RCA0, as it is stronger than DNR:

Proposition 4.9.10 (RCA0). SBCS ` DNR.

Proof. Assume SBCS. Let an oracle A be given. Define 〈fn〉n∈N as follows: If ΦA
n (n) ↓

[s] for the first time, then fn(s) = ΦA
n (n). If ΦA

n (n) never halts, then fn is the empty

function. Let 〈Xn〉n∈N be the sequence of finite containing sets guaranteed by SBCS.

Define a function g : N → N by g(n) := the least positive integer not in Xn. Then

we have ∀n (g(n) 6= ΦA
n (n)), as desired.

Question 4.9.11. What is the precise strength of SBCS?

4.10 Summary of Applications

Let us recall, from Subsection 2.1.1, that if a sequential theorem requires WKL0, then

any proof of the nonsequential version requires the Law of Excluded Middle (LEM).

This points to a necessary non-uniformity in any proof of the nonsequential statement.

Recall that EL0 is an intuitionistic analogue of RCA0 such that RCA0 = EL0 + LEM.
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Theorem 4.10.1 (Restatement of Theorem 2.1.8) (Dorais). Suppose that α(X) and

β(X,Z) are formulas that satisfy Condition Set Γ.

(a) If

EL0 ` ∀X(α(X)→ ∃Zβ(X,Z))

then

RCA0 ` ∀X(∀nα(Xn)→ ∃Z∀nβ(Xn, Zn))

.

(b) If

EL0 + WKL ` ∀X(α(X)→ ∃Zβ(X,Z))

then

WKL0 + BΣ0
2 ` ∀X(∀nα(Xn)→ ∃Z∀nβ(Xn, Zn))

.

We restate Condition Set Γ as well:

Condition Set Γ. The following are conditions on α(X) and β(X,Z) for Theorem

4.10.1 to hold. For part (a), α(X) must belong to the syntactic class NK and β(X,Z)

must belong to the syntactic class ΓK . For part (b), α(X) must belong to the syntactic

class NL and β(X,Z) must belong to the syntactic class ΓL. Definitions of these four

syntactic classes can be found in Dorais [6].

As long as α(X) and β(X,Z) assert that two finite sequences of rational numbers

ā and b̄ are such that some computable relation holds (ā R b̄), then Condition Set Γ

holds.
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Problem Conditions Description Reference

Col(C, r) C on-line r-colorable Graph coloring 4.2.2
Matchk(α, β) β ≤ α/(1 + α) α-Hall marriage problem 4.3.2

k < ω vertices
Sch(N, k, α) α ≥ 1.923 Task scheduling problem 4.4.3

Page(N, k, α) α ≥ k Paging problem 4.5.7
LU(N, k, α) α ≥ k List update problem 4.6.1

Table 4.1: Problems whose sequential versions are provable in RCA0

Claim 4.10.2 (stated without proof). Let P = (C,D,R) be any problem that we

have considered in Chapter 4. Then P can be expressed in the form ∀X(α(X) →

∃Zβ(X,Z)) in such a way that α(X) and β(X,Z) satisfy all parts of Condition Γ.

The following three theorems — one for each of RCA0, WKL0, and ACA0 — sum-

marize our Chapter 4 results, and part (b) of Theorem 4.10.4 and part (d) of Theorem

4.10.5 express the results as relevant consequences of Theorem 4.10.1.

Theorem 4.10.3. Let P be any problem in Table 4.1, and suppose that the corre-

sponding conditions hold. Then RCA0 ` SeqP.

Theorem 4.10.4. Let P be any problem in Table 4.2, and suppose that the corre-

sponding conditions hold. Then

(a) RCA0 ` (SeqP↔ WKL0).

(b) EL0 0 P. In particular, LEM is necessary for proving P.

Theorem 4.10.5. Let P be any problem in Table 4.3, and suppose that the corre-

sponding conditions hold. Then

(a) RCA0 ` (SeqP↔ ACA0) if P is not marked by a (?) in the table.

(b) (RCA0 + IΣ0
2) ` (SeqP↔ ACA0) if P is marked by a (?) in the table.
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Problem Conditions Description Reference

Col(C, r) C not on-line r-colorable Graph coloring 4.2.2
Matchk(α, β) α/(1 + α) < β ≤ min(α, 1) α-Hall marriage problem 4.3.2

k < ω vertices
Page(dk, k, α) 1 ≤ α < k, dk < ω Paging problem 4.5.7

LU(N, k, α) 1 ≤ α < k, N, k < ω List update problem 4.6.1
Dilworth(k) k ≥ 2 Dilworth’s theorem 4.7.1

DualDilworth(k) k ≥ 2 Dual to Dilworth’s theorem 4.7.6
SBSS Bounded separating sets 4.9.2

problem
SBCS′ Bounded containing sets 4.9.4

problem, modified

Table 4.2: Problems whose sequential versions are equivalent to WKL0

(c) If k < ω, then RCA0 ` (SeqPk ↔ ACA0).

(c) EL0 + WKL 0 P. In particular, LEM is necessary for proving P, even assuming

WKL.
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Problem Conditions Description Reference

PP(k, p) k ≥ 2, p ∈ (0, 1
k
] Pigeonhole principle 4.1.1

?ThinPP(k, p) k ≥ 2, p ∈ (0, 1− 1
k
] Thin pigeonhole principle 4.1.2

Match(α, β) α/(1 + α) < β ≤ min(α, 1) α-Hall marriage problem 4.3.2
no bound on vertices

?Sch(N, k, α) α ≤ 1.8521, 40 | k, N = 4k + 1 Task scheduling problem 4.4.3
or α = 1.88, k = 4

FinRam(n, k) n, k ≥ 2 Finite Ramsey’s theorem 4.8.1
Unbounded separating sets 4.9.1

problem

Table 4.3: Problems whose sequential versions are equivalent to ACA0 over RCA0. A
star (?) next to the problem name indicates that for nonstandard k, the problem is
equivalent to ACA0 over RCA0 + IΣ0

2.

1If Conjecture 4.4.12 holds, then we can replace 1.852 with any α where Sch(N, k, α) is not on-line
solvable, for appropriate N, k.
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